Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 37
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Cancer Genomics Proteomics ; 21(5): 464-473, 2024.
Article de Anglais | MEDLINE | ID: mdl-39191499

RÉSUMÉ

BACKGROUND/AIM: Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms. MATERIALS AND METHODS: Human malignant melanoma cell lines were cultured in the presence of terrein and analyzed. Angiogenin production was evaluated using ELISA. Ribosome biosynthesis was evaluated using silver staining of the nucleolar organizer region. Intracellular signaling pathways were analyzed using western blotting. Malignant melanoma cells were transplanted subcutaneously into the backs of nude mice. The tumors were removed at 5 weeks and analyzed histopathologically. RESULTS: Terrein inhibited angiogenin expression, proliferation, migration, invasion, and ribosome biosynthesis in malignant melanoma cells. Terrein was shown to inhibit tumor growth and angiogenesis in animal models. CONCLUSION: This study demonstrated that terrein has anti-tumor effects against malignant melanoma. Furthermore, chemically synthesized non-natural terrein can be mass-produced and serve as a novel potential anti-tumor drug candidate.


Sujet(s)
Prolifération cellulaire , Mélanome , Souris nude , Pancreatic ribonuclease , Humains , Animaux , Mélanome/traitement médicamenteux , Mélanome/métabolisme , Mélanome/anatomopathologie , Pancreatic ribonuclease/métabolisme , Souris , Prolifération cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Tests d'activité antitumorale sur modèle de xénogreffe , Mouvement cellulaire/effets des médicaments et des substances chimiques , Néovascularisation pathologique/traitement médicamenteux , Néovascularisation pathologique/métabolisme , Néovascularisation pathologique/anatomopathologie , Régulation de l'expression des gènes tumoraux/effets des médicaments et des substances chimiques , Cyclopentanes
2.
Heliyon ; 10(13): e34206, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39091941

RÉSUMÉ

Introduction: Vital pulp therapy (VPT) is performed to preserve dental pulp. However, the biocompatibility of the existing materials is of concern. Therefore, novel materials that can induce pulp healing without adverse effects need to be developed. Resolvin D2 (RvD2), one of specialized pro-resolving mediators, can resolve inflammation and promote the healing of periapical lesions. Therefore, RvD2 may be suitable for use in VPT. In the present study, we evaluated the efficacy of RvD2 against VPT using in vivo and in vitro models. Methods: First molars of eight-week-old male Sprague-Dawley rats were used for pulpotomy. They were then divided into three treatment groups: RvD2, phosphate-buffered saline, and calcium hydroxide groups. Treatment results were assessed using radiological, histological, and immunohistochemical (GPR18, TNF-α, Ki67, VEGF, TGF-ß, CD44, CD90, and TRPA1) analyses. Dental pulp-derived cells were treated with RvD2 in vitro and analyzed using cell-proliferation and cell-migration assays, real-time PCR (Gpr18, Tnf-α, Il-1ß, Tgf-ß, Vegf, Nanog, and Trpa1), ELISA (VEGF and TGF-ß), immunocytochemistry (TRPA1), and flow cytometry (dental pulp stem cells: DPSCs). Results: The formation of calcified tissue in the pulp was observed in the RvD2 and calcium hydroxide groups. RvD2 inhibited inflammation in dental pulp cells. RvD2 promoted cell proliferation and migration and the expression of TGF-ß and VEGF in vitro and in vivo. RvD2 increased the number of DPSCs. In addition, RvD2 suppressed TRPA1 expression as a pain receptor. Conclusion: RvD2 induced the formation of reparative dentin, anti-inflammatory effects, and decreased pain, along with the proliferation of DPSCs via the expression of VEGF and TGF-ß, on the pulp surface in pulpotomy models.

3.
Heliyon ; 10(11): e31872, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38919974

RÉSUMÉ

Periodontal disease is highly prevalent in both humans and dogs. Although there have been reports of cross-infection of periodontopathic bacteria, methods for assessing it have yet to be established. The actual status of cross-infection remains to be seen. The purpose of this study was to evaluate the utility of bacterial DNA and serum immunoglobulin G (IgG) antibody titer assays to assess infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs. Four experimental beagles were used for establishing methods. Sixty-six companion dogs at veterinary clinics visiting for treatment and prophylaxis of periodontal disease were used and divided into healthy, gingivitis, and periodontitis groups. Periodontal pathogens such as Porphyromonas gingivalis and Porphyromonas gulae were investigated as target bacteria. DNA levels of both bacteria were measured using species-specific primers designed for real-time polymerase chain reaction (PCR). Serum IgG titers of both bacteria were measured by enzyme-linked immunosorbent assay (ELISA). PCR primers were confirmed to have high sensitivity and specificity. However, there was no relationship between the amount of bacterial DNA and the severity of the periodontal disease. In addition, dogs with periodontitis had higher IgG titers against both bacteria compared to dogs in the healthy and gingivitis groups; there was cross-reactivity between the two bacteria. Receiver operating characteristic (ROC) analysis of IgG titers against both bacteria showed high sensitivity (>90 %) and specificity (>75 %). Since both bacteria were distinguished by DNA assays, the combination of these assays may be useful in the evaluation of cross-infection.

4.
Antibiotics (Basel) ; 12(11)2023 Oct 24.
Article de Anglais | MEDLINE | ID: mdl-37998764

RÉSUMÉ

Dental caries are an oral infectious disease that can affect human health both orally and systemically. It remains an urgent issue to establish a novel antibacterial method to prevent oral infection for a healthy life expectancy. The aim of this study was to evaluate the inhibitory effects of novel iron chelators, super-polyphenols (SPs), on the cariogenic bacterium Streptococcus mutans, in vitro. SPs were developed to reduce the side effects of iron chelation therapy and were either water-soluble or insoluble depending on their isoforms. We found that SP6 and SP10 inhibited bacterial growth equivalent to povidone-iodine, and viability tests indicated that their effects were bacteriostatic. These results suggest that SP6 and SP10 have the potential to control oral bacterial infections such as Streptococcus mutans.

5.
BMC Oral Health ; 23(1): 843, 2023 11 08.
Article de Anglais | MEDLINE | ID: mdl-37940896

RÉSUMÉ

BACKGROUND: Plasminogen serves as the precursor to plasmin, an essential element in the fibrinolytic process, and is synthesized primarily in the liver. Plasminogen activation occurs through the action of plasminogen activator, converting it into plasmin. This conversion greatly enhances the fibrinolytic system within tissues and blood vessels, facilitating the dissolution of fibrin clots. Consequently, congenital deficiency of plasminogen results in impaired fibrin degradation. Patients with plasminogen deficiency typically exhibit fibrin deposits in various mucosal sites throughout the body, including the oral cavity, eyes, vagina, and digestive organs. Behcet's disease is a chronic recurrent systemic inflammatory disease with four main symptoms: aphthous ulcers of the oral mucosa, vulvar ulcers, skin symptoms, and eye symptoms, and has been reported worldwide. This disease is highly prevalent around the Silk Road from the Mediterranean to East Asia. We report a case of periodontitis in a patient with these two rare diseases that worsened quickly, leading to alveolar bone destruction. Genetic testing revealed a novel variant characterized by a stop-gain mutation, which may be a previously unidentified etiologic gene associated with decreased plasminogen activity. CASE PRESENTATION: This case report depicts a patient diagnosed with ligneous gingivitis during childhood, originating from plasminogen deficiency and progressing to periodontitis. Genetic testing revealed a suspected association with the PLG c.1468C > T (p.Arg490*) stop-gain mutation. The patient's periodontal condition remained stable with brief intervals of supportive periodontal therapy. However, the emergence of Behçet's disease induced acute systemic inflammation, necessitating hospitalization and treatment with steroids. During hospitalization, the dental approach focused on maintaining oral hygiene and alleviating contact-related pain. The patient's overall health improved with inpatient care and the periodontal tissues deteriorated. CONCLUSIONS: Collaborative efforts between medical and dental professionals are paramount in comprehensively evaluating and treating patients with intricate complications from rare diseases. Furthermore, the PLG c.1468C > T (p.Arg490*) stop-gain mutation could contribute to the association between plasminogen deficiency and related conditions.


Sujet(s)
Maladie de Behçet , Parodontite , Femelle , Humains , Fibrinolysine , Maladie de Behçet/complications , Maladie de Behçet/génétique , Maladies rares/complications , Parodontite/complications , Parodontite/génétique , Plasminogène/génétique , Fibrine
6.
Bioengineering (Basel) ; 10(4)2023 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-37106675

RÉSUMÉ

Apical periodontitis is an inflammatory response caused by pulp infection. It induces bone resorption in the apical and periapical regions of the tooth. The most conservative approach to treat this condition is nonsurgical endodontic treatment. However, clinical failure has been reported with this approach; thus, alternative procedures are required. This review highlights recent literature regarding advanced approaches for the treatment of apical periodontitis. Various therapies, including biological medications, antioxidants, specialized pro-resolving lipid mediators, and stem cell therapy, have been tested to increase the success rate of treatment for apical periodontitis. Some of these approaches remain in the in vivo phase of research, while others have just entered the translational research phase to validate clinical application. However, a detailed understanding of the molecular mechanisms that occur during development of the immunoinflammatory reaction in apical periodontitis remains unclear. The aim of this review was to summarize advanced approaches for the treatment of apical periodontitis. Further research can confirm the potential of these alternative nonsurgical endodontic treatment approaches.

7.
J Fungi (Basel) ; 9(3)2023 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-36983482

RÉSUMÉ

Current periodontal treatment focuses on the mechanical removal of the source of infection, such as bacteria and their products, and there is no approach to control the host inflammatory response that leads to tissue destruction. In order to control periodontal inflammation, we have previously reported the optimization of (+)-terrein synthesis methods and the inhibitory effect of (+)-terrein on osteoclast differentiation in vitro. However, the pharmacological effect of (+)-terrein in vivo in the periodontitis model is still unknown. In this study, we investigated the effect of synthetic (+)-terrein on inflammatory bone resorption using a ligature-induced periodontitis mouse model. Synthetic (+)-terrein (30 mg/kg) was administered intraperitoneally twice a week to the mouse periodontitis model. The control group was treated with phosphate buffer. One to two weeks after the induction of periodontitis, the periodontal tissues were harvested for radiological evaluation (micro-CT), histological evaluation (HE staining and TRAP staining), and the evaluation of inflammatory cytokine production in the periodontal tissues and serum (quantitative reverse-transcription PCR, ELISA). The synthetic (+)-terrein-treated group suppressed alveolar bone resorption and the number of osteoclasts in the periodontal tissues compared to the control group (p < 0.05). In addition, synthetic (+)-terrein significantly suppressed both mRNA expression of TNF-α in the periodontal tissues and the serum concentration of TNF-α (both p < 0.05). In conclusion, we have demonstrated that synthetic (+)-terrein abrogates alveolar bone resorption via the suppression of TNF-α production and osteoclast differentiation in vivo. Therefore, we could expect potential clinical effects when using (+)-terrein on inflammatory bone resorption, including periodontitis.

8.
BMC Oral Health ; 23(1): 90, 2023 02 13.
Article de Anglais | MEDLINE | ID: mdl-36782172

RÉSUMÉ

The major active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), is known for its wide bioactivity in periodontal tissues. Although the exact mechanisms underlying its protective action against periodontitis remain unclear, recent studies have shown that 1,25D3 regulates autophagy. Autophagy is vital for intracellular pathogen invasion control, inflammation regulation, and bone metabolic balance in periodontal tissue homeostasis, and its regulation could be an interesting pathway for future periodontal studies. Since vitamin D deficiency is a worldwide health problem, its role as a potential regulator of autophagy provides new insights into periodontal diseases. Based on this premise, this narrative literature review aimed to investigate the possible connection between 1,25D3 and autophagy in periodontitis. A comprehensive literature search was conducted on PubMed using the following keywords (e.g., vitamin D, autophagy, periodontitis, pathogens, epithelial cells, immunity, inflammation, and bone loss). In this review, the latest studies on the protective action of 1,25D3 against periodontitis and the regulation of autophagy by 1,25D3 are summarized, and the potential role of 1,25D3-activated autophagy in the pathogenesis of periodontitis is analyzed. 1,25D3 can exert a protective effect against periodontitis through different signaling pathways in the pathogenesis of periodontitis, and at least part of this regulatory effect is achieved through the activation of the autophagic response. This review will help clarify the relationship between 1,25D3 and autophagy in the homeostasis of periodontal tissues and provide perspectives for researchers to optimize prevention and treatment strategies in the future.


Sujet(s)
Calcitriol , Parodontite , Humains , Vitamine D , Autophagie , Inflammation
9.
Bull Tokyo Dent Coll ; 64(1): 13-22, 2023 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-36792152

RÉSUMÉ

Dental anterior fractures are common injuries, especially in those who practice extreme sports. This report describes a 25-year-old Bolivian patient who attended our private dental clinic in La Paz, Bolivia after experiencing an accident during downhill mountain biking. An intraoral examination revealed a fracture line on the buccal side in the middle third of the coronal portion of the right central maxillary incisor which extended towards the proximal and lingual sides. Multidisciplinary treatment, including crown lengthening, osteotomy, root canal treatment, fiberglass post insertion, and reattachment of the fracture segment was performed. A follow-up examination at 10 months later revealed that the tooth was completely reestablished both functionally and esthetically and that there was no periapical pathosis or discomfort. This outcome suggests that if a patient seeks a dental consultation soon after a complex crown-root fracture has occurred, and if the broken tooth segment is available, then reattachment offers an economical and simple treatment option which will allow immediate restoration of functionality and esthetic standards. Continued follow-up should form part of such a treatment plan to allow long-term pulp vitality and periodontal health status to be monitored.


Sujet(s)
Collage dentaire , Fractures dentaires , Humains , Adulte , Racine dentaire/traumatismes , Incisive , Dentisterie esthétique , Fractures dentaires/thérapie , Traitement de canal radiculaire , Couronne dentaire , Restaurations dentaires permanentes
10.
Clin Case Rep ; 10(4): e05725, 2022 Apr.
Article de Anglais | MEDLINE | ID: mdl-35449775

RÉSUMÉ

The study aims to reveal the composition of subgingival bacteria in monozygotic twins with discordant in severity and progression risk of periodontitis. Microbiome analysis indicated that most bacteria were heritable but differed in their abundance and immune response. The dysbiotic bacteria can be considered as risk markers for periodontitis progression.

11.
J Immunol ; 208(5): 1146-1154, 2022 03 01.
Article de Anglais | MEDLINE | ID: mdl-35110422

RÉSUMÉ

Porphyromonas gingivalis is commonly known as one of the major pathogens contributing to periodontitis, and its persistent infection may increase the risk for the disease. The proinflammatory mediators, including IL-6, TNF-α, and cyclooxygenase-2 (COX-2)/PGE2, are closely associated with progression of periodontitis. In this study, we focused on the cysteine protease "gingipains," lysine-specific gingipain, arginine-specific gingipain (Rgp) A, and RgpB, produced by P. gingivalis, and used the wild-type strain and several gene-deletion mutants (rgpA, rgpB, kgp, and fimA) to elucidate the involvement of gingipains in COX-2 expression and PGE2 production. We infected human monocytes, which are THP-1 cells and primary monocytes, with these bacterial strains and found that gingipains were involved in induction of COX-2 expression and PGE2 production. We have shown that the protease activity of gingipains was crucial for these events by using gingipain inhibitors. Furthermore, activation of ERK1/2 and IκB kinase was required for gingipain-induced COX-2 expression/PGE2 production, and these kinases activated two transcription factors, c-Jun/c-Fos (AP-1) and NF-κB p65, respectively. In particular, these data suggest that gingipain-induced c-Fos expression via ERK is essential for AP-1 formation with c-Jun, and activation of AP-1 and NF-κB p65 plays a central role in COX-2 expression/PGE2 production. Thus, we show the (to our knowledge) novel finding that gingipains with the protease activity from P. gingivalis induce COX-2 expression and PGE2 production via activation of MEK/ERK/AP-1 and IκB kinase/NF-κB p65 in human monocytes. Hence it is likely that gingipains closely contribute to the inflammation of periodontal tissues.


Sujet(s)
Cyclooxygenase 2/biosynthèse , Dinoprostone/biosynthèse , Gingipain cysteine endopeptidases/métabolisme , Système de signalisation des MAP kinases/physiologie , Parodontite/anatomopathologie , Porphyromonas gingivalis/métabolisme , Protéines bactériennes/génétique , Lignée cellulaire , Cysteine endopeptidases/génétique , Protéines de fimbriae/génétique , Gingipain cysteine endopeptidases/génétique , Humains , I-kappa B Kinase/métabolisme , Mitogen-Activated Protein Kinase 1/métabolisme , Mitogen-Activated Protein Kinase 3/métabolisme , Monocytes/microbiologie , Parodontite/microbiologie , Cellules THP-1 , Facteur de transcription AP-1/métabolisme , Facteur de transcription RelA/métabolisme
12.
Front Pharmacol ; 12: 674366, 2021.
Article de Anglais | MEDLINE | ID: mdl-34168561

RÉSUMÉ

Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKCα/ßII, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis.

13.
Odontology ; 109(1): 239-249, 2021 Jan.
Article de Anglais | MEDLINE | ID: mdl-32430725

RÉSUMÉ

There is no conclusive evidence regarding a causal relationship between periodontitis and atherosclerosis. In this study, we examined the microbiome in the oral cavity and atheromatous plaques from atherosclerosis patients with or without periodontitis to investigate the role of oral bacteria in the formation of atheromatous plaques. We chose four patients with and without periodontitis, who had undergone carotid endarterectomy. Bacterial samples were extracted from the tongue surface, from periodontal pocket (during the oral examination), and from the atheromatous plaques (APs). We investigated the general and oral conditions from each patient and performed next-generation sequencing (NGS) analysis for all bacterial samples. There were no significant differences between both groups concerning general conditions. However, the microbiome patterns of the gingival pocket showed differences depending on the absence or presence of periodontitis, while those of the tongue surface were relatively similar. The microbiome pattern of the atheromatous plaques was entirely different from that on the tongue surface and gingival pocket, and oral bacteria were seldom detected. However, the microbiome pattern in atheromatous plaques was different in the presence or absence of periodontitis. These results suggested that oral bacteria did not affect the formation of atheromatous plaques directly.


Sujet(s)
Microbiote , Parodontite , Plaque d'athérosclérose , ADN bactérien/génétique , Humains
14.
Int Immunopharmacol ; 83: 106429, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-32222639

RÉSUMÉ

Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease.


Sujet(s)
Aspergillus/métabolisme , Cyclopentanes/pharmacologie , Ostéoclastes/métabolisme , Ligand de RANK/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Acid phosphatase/métabolisme , Animaux , Aspergillus/composition chimique , Cellules de la moelle osseuse/effets des médicaments et des substances chimiques , Résorption osseuse/génétique , Résorption osseuse/métabolisme , Cathepsine K/métabolisme , Différenciation cellulaire/effets des médicaments et des substances chimiques , Relation dose-effet des médicaments , Isoenzymes/métabolisme , Macrophages/effets des médicaments et des substances chimiques , Macrophages/métabolisme , Mâle , Souris , Souris de lignée C57BL , Facteurs de transcription NFATC/métabolisme , Ostéoclastes/cytologie , Ostéoclastes/effets des médicaments et des substances chimiques , Ostéogenèse/effets des médicaments et des substances chimiques , Ligand de RANK/effets des médicaments et des substances chimiques
15.
Odontology ; 108(1): 57-65, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31520265

RÉSUMÉ

Dental caries is a type of oral microbiome dysbiosis and biofilm infection that affects oral and systemic conditions. For healthy life expectancy, natural bacteriostatic products are ideal for daily and lifetime use as anti-oral infection agents. This study aimed to evaluate the inhibitory effects of abietic acid, a diterpene derived from pine rosin, on the in vitro growth of cariogenic bacterial species, Streptococcus mutans. The effective minimum inhibitory concentration of abietic acid was determined through observation of S. mutans growth, acidification, and biofilm formation. The inhibitory effects of abietic acid on the bacterial membrane were investigated through the use of in situ viability analysis and scanning electron microscopic analysis. Cytotoxicity of abietic acid was also examined in the context of several human cell lines using tetrazolium reduction assay. Abietic acid was found to inhibit key bacterial growth hallmarks such as colony forming ability, adenosine triphosphate activity (both planktonic and biofilm), acid production, and biofilm formation. Abietic acid was identified as bacteriostatic, and this compound caused minimal damage to the bacterial membrane. This action was different from that of povidone-iodine or cetylpyridinium chloride. Additionally, abietic acid was significantly less cytotoxic compared to povidone-iodine, and it exerted lower toxicity towards epithelial cells and fibroblasts compared to that against monocytic cells. These data suggest that abietic acid may prove useful as an antibacterial and antibiofilm agent for controlling S. mutans infection.


Sujet(s)
Anti-infectieux , Caries dentaires , Abiétanes , Antibactériens , Biofilms , Humains , Tests de sensibilité microbienne , Streptococcus mutans
16.
J Periodontol ; 90(9): 1043-1052, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-30889294

RÉSUMÉ

BACKGROUND: Basic fibroblast growth factor (bFGF) has been applied for periodontal regeneration. However, the application depends on bone defect morphology because bFGF diffuses rapidly from defect sites. In a previous study, collagen-binding bFGF (CB-bFGF) has been shown to enhance bone formation by collagen-anchoring in the orthopedic field. The aim of this study is to demonstrate the efficacy of CB-bFGF with collagen scaffolds in bone regeneration of horizontal bone defect. METHODS: Cell proliferation activity and collagen binding activity of CB-bFGF was confirmed by WST-8 assay and collagen binding assay, respectively. The retention of CB-bFGF in the collagen sheet (CS) was measured by fluorescence imaging. The rat horizontal alveolar bone defect model was employed to investigate the efficacy of CB-bFGF with collagen powder (CP). After 4 and 8 weeks, the regenerative efficacy was evaluated by microcomputed tomography, histological, and immunohistochemical analyses. RESULTS: CB-bFGF had a comparable proliferation activity to bFGF and a collagen binding activity. CB-bFGF was retained in CS longer than bFGF. At 8 weeks postoperation, bone volume, bone mineral content, and new bone area in CB-bFGF/CP group were significantly increased compared with those in other groups. Furthermore, epithelial downgrowth was significantly suppressed in CB-bFGF/CP group. At 4 weeks, the numbers of osteocalcin, proliferating cell nuclear antigen, and osteopontin-positive cells at the regeneration site in CB-bFGF/CP group were greater than those in other groups. CONCLUSIONS: CB-bFGF/CP effectively promoted bone regeneration of horizontal bone defect possibly by sustained release of bFGF. The potential of CB-bFGF composite material for improved periodontal regeneration in vertical axis was shown.


Sujet(s)
Régénération osseuse , Facteur de croissance fibroblastique de type 2 , Accélération , Animaux , Collagène , Rats , Microtomographie aux rayons X
17.
Front Immunol ; 10: 307, 2019.
Article de Anglais | MEDLINE | ID: mdl-30863409

RÉSUMÉ

Periapical periodontitis results from pulpal infection leading to pulpal necrosis and resorption of periapical bone. The current treatment is root canal therapy, which attempts to eliminate infection and necrotic tissue. But, in some cases periapical inflammation doesn't resolve even after treatment. Resolvins belongs to a large family of specialized pro-resolving lipid mediators that actively resolves inflammation signaling via specific receptors. Resolvin D2 (RvD2), a metabolite of docosahexaenoic acid (DHA), was tested as an intracanal medicament in rats in vivo. Mechanism was evaluated in rat primary dental pulp cells (DPCs) in vitro. The results demonstrate that RvD2 reduces inflammatory cell infiltrate, periapical lesion size, and fosters pulp like tissue regeneration and healing of periapical lesion. RvD2 enhanced expression of its receptor, GPR18, dentin matrix acidic phosphoprotein 1 (DMP1) and mineralization in vivo and in vitro. Moreover, RvD2 induces phosphorylation of Stat3 transcription factor in dental pulp cells. We conclude that intracanal treatment with RvD2 resolves inflammation and promoting calcification around root apex and healing of periapical bone lesions. The data suggest that RvD2 induces active resolution of inflammation with pulp-like tissue regeneration after root canal infection and thus maybe suitable for treating periapical lesions.


Sujet(s)
Acide docosahexaénoïque/pharmacologie , Inflammation/prévention et contrôle , Parodontite périapicale/prévention et contrôle , Tissu périapical/effets des médicaments et des substances chimiques , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Animaux , Cellules cultivées , Pulpe dentaire/cytologie , Pulpe dentaire/effets des médicaments et des substances chimiques , Pulpe dentaire/métabolisme , Protéines de la matrice extracellulaire/génétique , Protéines de la matrice extracellulaire/métabolisme , Expression des gènes/effets des médicaments et des substances chimiques , Mâle , Tissu périapical/imagerie diagnostique , Tissu périapical/anatomopathologie , Phosphoprotéines/génétique , Phosphoprotéines/métabolisme , Phosphorylation/effets des médicaments et des substances chimiques , Rat Wistar , Récepteurs de cannabinoïdes/génétique , Récepteurs de cannabinoïdes/métabolisme , Traitement de canal radiculaire/méthodes , Facteur de transcription STAT-3/métabolisme , Microtomographie aux rayons X/méthodes
18.
J Cell Mol Med ; 23(2): 1211-1223, 2019 02.
Article de Anglais | MEDLINE | ID: mdl-30511442

RÉSUMÉ

The recruitment of tissue-resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin-mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet-derived growth factor-BB (PDGF-BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up-regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti-integrin α5 antibodies inhibited PDL cell migration. Treatment with anti-integrin α3, α3-blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF-BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3-mediated inhibition and α5-mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.


Sujet(s)
Mouvement cellulaire , Matrice extracellulaire/métabolisme , Intégrine alpha3/métabolisme , Intégrines/métabolisme , Desmodonte/physiologie , Adhérence cellulaire , Prolifération cellulaire , Cellules cultivées , Analyse de profil d'expression de gènes , Humains , Intégrine alpha3/génétique , Intégrines/génétique , Desmodonte/cytologie , Desmodonte/métabolisme
19.
Heliyon ; 4(11): e00979, 2018 Nov.
Article de Anglais | MEDLINE | ID: mdl-30519664

RÉSUMÉ

Control of bacterial infection-induced inflammatory responses is one of the effective therapeutic approaches of periodontal diseases. Natural products such as lipid mediators and metabolites from microorganisms have been used for decreasing inflammation. We previously reported that (+)-terrein inhibited activation of STAT3 and ERK1/2 in interleukin-6 (IL-6) signaling cascade, leading to prevent vascular endothelial growth factor (VEGF) secretion in human gingival fibroblasts (HGFs). However, little is still known about the role of (+)-terrein on inflammatory responses. In this study, we provided the possibility of novel action that (+)-terrein inhibits activation of Janus-activated kinase 1 (JAK1), which has a central function in IL-6 signaling cascade, and alters expression of mRNAs and proteins induced by IL-6/soluble IL-6 receptor (sIL-6R) stimulation in HGFs. First, we performed PCR array to examine IL-6/sIL-6R-induced mRNA expression, and then expression of mRNA and protein of colony stimulating factor-1 (CSF1) and VEGF were clearly determined by quantitative RT-PCR and ELISA, respectively. Treatment with (+)-terrein suppressed expression of mRNA and protein of CSF1 and VEGF by IL-6/sIL-6R stimulation. Next, to test the effect of (+)-terrein on IL-6/sIL-6R signaling cascade, we demonstrated whether (+)-terrein affects phosphorylation of JAK1 and its downstream proteins, Akt and SHP-2. Western blotting revealed that (+)-terrein inhibited IL-6/sIL-6R-induced phosphorylation of JAK1, Akt, and SHP-2. Therefore, (+)-terrein suppresses IL-6/sIL-6R-induced expression of CSF1 and VEGF via inhibition of JAK1, Akt, and SHP-2. Based on our results, we suggest that (+)-terrein is a candidate compound for anti-inflammatory effect associated with IL-6 signaling.

20.
Oncotarget ; 9(67): 32751-32760, 2018 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-30214682

RÉSUMÉ

Iron chelation therapy is the main treatment for iron overload disease. Iron chelators were recently reported to be useful for cancer therapy; however, they cause side effects that make them difficult to use in some cancer patients. Thus, a novel oral iron chelator, super-polyphenol (SP), was developed for cancer therapy to decrease the side effects. SP is either water soluble or insoluble, and has different isoforms according to the number of side chains. Of these isoforms, water-soluble SP6 and SP10 appear to be the best candidates, as they have the strongest chelating abilities. In this study, we focused on the usefulness and safety of SP6 and SP10 as anti-cancer drugs, and examined their anti-cancer effects and toxicity. The results showed that SP6 and SP10 inhibited cancer cell proliferation by inducing apoptosis in HCT116, HSC-2, A549, and MCF-7 cancer cells. SP10 also inhibited tumor growth in an HCT116 xenograft model. SP6 and SP10 had no acute toxicities. An intravenous injection test revealed that SP6 and SP10 had better safety profiles than the iron chelator deferoxamine. In conclusion, SP is a novel oral iron chelator with anti-cancer effects and few adverse side effects. This is the first report of SP in the literature.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE