Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Opt Express ; 25(20): 24745-24755, 2017 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-29041420

RÉSUMÉ

In this work, dynamics of carrier tunneling and recombination in InGaN-based asymmetric coupled multiple quantum wells (AC-MQWs) are systematically studied by excitation power-dependent and temperature-dependent photoluminescence (PL) measurements. With different pumping wavelengths of 405 and 325 nm, distinctly different PL spectral evolutions are observed, which could be well explained by the proposed anomalous carrier "reverse tunneling" based on the forbidden 1h→2e transitions in the AC-MQWs. The forbidden transitions are identified through the well agreement between the measured photo-modulated reflectance (PR) spectrum and the calculated interband transition energies. Our results indicate that, by ingeniously designing the MQW structure of the InGaN-based optoelectronic devices, it is possible to realize a specific interband optical transition which is even not allowed by the selection rule, and thereby effectively improve the carrier distribution across the QWs through the conventional and/or anomalous "reverse" carrier tunneling.

2.
Nanoscale Res Lett ; 7(1): 605, 2012 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-23111026

RÉSUMÉ

Photoluminescence (PL) spectra were measured as a function of well width (LW) and temperature in ZnO/Mg0.1Zn0.9O single quantum wells (QWs) with graded thickness. The emission linewidth (full width at half maximum) was extracted from the emission spectra, and its variation as a function of LW was studied. The inhomogeneous linewidth obtained at 5 K was found to decrease with increasing LW from 1.8 to 3.3 nm due to the reduced potential variation caused by the LW fluctuation. Above 3.3 nm, however, the linewidth became larger with increasing LW, which was explained by the effect related with defect generation due to strain relaxation and exciton expansion in the QW. For the homogenous linewidth broadening, longitudinal optical (LO) phonon scattering and impurity scattering were taken into account. The LO phonon scattering coefficient ΓLO and impurity scattering coefficient Γimp were deduced from the temperature dependence of the linewidth of the PL spectra. Evident reduction of ΓLO with decreasing LW was observed, which was ascribed to the confinement-induced enhancement of the exciton binding energy. Different from ΓLO, a monotonic increase in Γimp was observed with decreasing LW, which was attributed to the enhanced penetration of the exciton wave function into the barrier layers.

3.
J Nanosci Nanotechnol ; 11(12): 10584-8, 2011 Dec.
Article de Anglais | MEDLINE | ID: mdl-22408953

RÉSUMÉ

Strained GaAsN T-junction quantum wires (T-QWRs) with different N contents grown on GaAs by two steps metal-organic vapor phase epitaxy in [001] and [110] directions, namely QW1 and QW2 respectively, have been investigated by photoreflectance (PR) spectroscopy. Two GaAsN T-QWRs with different N contents were formed by T-intersection of (i) a 6.4-nm-thick GaAs0.89N0.011 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2 and (ii) a 5.0-nm-thick GaAs0.985N0.015 QW1 and a 5.2-nm-thick GaAs0.968N0.032 QW2. An evidence of a one-dimensional structure at T-intersection of the two QWs on the (001) and (110) surfaces was established by PR resonances associated with extended states in all the QW and T-QWR samples. It is found that larger lateral confinement energy than 100 meV in both of [001] and [110] directions were achieved for GaAsN T-QWRs. With increasing temperature, the transition energy of GaAsN T-QWRs decreases with a faster shrinking rate compared to that of bulk GaAs. Optical quality of GaAsN T-QWRs is found to be affected by the N-induced band edge fluctuation, which is the unique characteristic of dilute III-V-nitrides.

4.
J Nanosci Nanotechnol ; 10(11): 7154-7, 2010 Nov.
Article de Anglais | MEDLINE | ID: mdl-21137886

RÉSUMÉ

Nearly lattice-matched In(0.528)Ga(0.472)P(1-y)Ny bulk layer and In(0.528)Ga(0.472)P(1-y)Ny/GaAs and GaAs/ In(0.528)Ga(0.472)P(1-y)Ny quantum wells with higher N content, y = 0.027, were grown on GaAs(001) substrates by metalorganic vapor phase epitaxy. High-resolution X-ray diffraction results demonstrated the high quality of both the layer and quantum wells with fairly flat interfaces. Temperature dependent photoluminescence results showed that a near-band-edge emission is dominant in the bulk In(0.528)Ga(0.472)P(0.973)N(0.027) layer, which at low temperature (T < 100 K) is associated with localized emissions centered at approximately 1.73 eV. Bandgap of In(0.528)Ga(0.472)P(0.973)N(0.027) was examined to be 1.81 and 1.78 eV at 10 K and room-temperature, respectively. Low temperature (10 K)-photoluminescence spectrum obtained from the GaAs/InxGa(1-x)P(1-y)Ny quantum well also exhibited red emission at 1.73 eV attributed to the emission from the InGaPN barrier. In addition, there are the extra weak peaks appear in a near-infrared energy range at 1.357 and 1.351 eV for InxGa(1-x)P(1-y)Ny/GaAs and GaAs/InxGa(1-x)P(1-y)Ny quantum wells, respectively. Such optical transitions are considered as an indirect transition between electrons located in the InGaPN and holes located in the GaAs regions. This situation suggested that both the In(0.528)Ga(0.472)P(0.973)N(0.027)/GaAs and GaAs/In(0.528)Ga(0.472)P(0.973)N(0.027) quantum wells exhibits a type-II quantum structure. This interpretation is justified when the valence and conduction band offsets of the type-II band alignment, which are relatively approximated to be 450 and 160 meV, are properly taken into account.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE