Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nature ; 629(8011): 417-425, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38658748

RÉSUMÉ

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Sujet(s)
Lymphocytes T CD8+ , Prolifération cellulaire , Dinoprostone , Lymphocytes TIL , Tumeurs , Cellules souches , Échappement de la tumeur à la surveillance immunitaire , Animaux , Femelle , Humains , Mâle , Souris , Lymphocytes T CD8+/cytologie , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Différenciation cellulaire , Lignée cellulaire tumorale , Dinoprostone/métabolisme , Modèles animaux de maladie humaine , Facteur nucléaire hépatocytaire HNF-1 alpha/métabolisme , Interleukine-2 , Noeuds lymphatiques/cytologie , Noeuds lymphatiques/immunologie , Lymphocytes TIL/cytologie , Lymphocytes TIL/immunologie , Lymphocytes TIL/métabolisme , Souris de lignée C57BL , Tumeurs/immunologie , Tumeurs/prévention et contrôle , Sous-type EP2 des récepteurs des prostaglandines E/déficit , Sous-type EP2 des récepteurs des prostaglandines E/métabolisme , Sous-type EP4 des récepteurs des prostaglandines E/déficit , Sous-type EP4 des récepteurs des prostaglandines E/métabolisme , Transduction du signal , Cellules souches/cytologie , Cellules souches/immunologie , Cellules souches/métabolisme , Échappement de la tumeur à la surveillance immunitaire/immunologie
2.
Nat Commun ; 14(1): 6858, 2023 10 27.
Article de Anglais | MEDLINE | ID: mdl-37891230

RÉSUMÉ

T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.


Sujet(s)
Glycolyse , Tumeurs , Animaux , Souris , Lymphocytes T CD8+ , Tumeurs/thérapie , Mitochondries , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique
3.
Immunity ; 56(1): 143-161.e11, 2023 01 10.
Article de Anglais | MEDLINE | ID: mdl-36630913

RÉSUMÉ

Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.


Sujet(s)
Interleukines , Tumeurs , Récepteurs viraux , Lymphocytes T auxiliaires , Animaux , Humains , Souris , Antigènes de différenciation des lymphocytes T/métabolisme , Interleukines/génétique , Interleukines/métabolisme , Cellules tueuses naturelles/métabolisme , Tumeurs/métabolisme , Liaison aux protéines , Lymphocytes T auxiliaires/métabolisme ,
4.
Br J Cancer ; 127(12): 2175-2185, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36266575

RÉSUMÉ

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS: Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS: We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS: Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.


Sujet(s)
Tumeurs , Lymphocytes T , Animaux , Souris , Adénosine/pharmacologie , Cytokines , Microenvironnement tumoral
5.
STAR Protoc ; 3(4): 101708, 2022 12 16.
Article de Anglais | MEDLINE | ID: mdl-36136753

RÉSUMÉ

A major impediment to effective cellular therapies in solid tumors is the limited access of therapeutic cells to the tumor site. One strategy to overcome this challenge is to endow T cells with chemotactic properties required to access tumor tissue. Here, we present a chimeric antigen receptor (CAR)-modified T cell strategy centered around enhanced T cell trafficking. We outline isolation, activation, and transduction of human T cells, as well as techniques for assessing migratory and cytotoxic capacity of CAR-T cells. For complete details on the use and execution of this protocol, please refer to Lesch et al. (2021).


Sujet(s)
Tumeurs , Récepteurs chimériques pour l'antigène , Humains , Immunothérapie adoptive/méthodes , Chimiotaxie , Tumeurs/thérapie , Lymphocytes T
6.
Sci Adv ; 7(24)2021 06.
Article de Anglais | MEDLINE | ID: mdl-34108220

RÉSUMÉ

CAR T cell therapy remains ineffective in solid tumors, due largely to poor infiltration and T cell suppression at the tumor site. T regulatory (Treg) cells suppress the immune response via inhibitory factors such as transforming growth factor-ß (TGF-ß). Treg cells expressing the C-C chemokine receptor 8 (CCR8) have been associated with poor prognosis in solid tumors. We postulated that CCR8 could be exploited to redirect effector T cells to the tumor site while a dominant-negative TGF-ß receptor 2 (DNR) can simultaneously shield them from TGF-ß. We identified that CCL1 from activated T cells potentiates a feedback loop for CCR8+ T cell recruitment to the tumor site. This sustained and improved infiltration of engineered T cells synergized with TGF-ß shielding for improved therapeutic efficacy. Our results demonstrate that addition of CCR8 and DNR into CAR T cells can render them effective in solid tumors.


Sujet(s)
Tumeurs , Humains , Tumeurs/thérapie , Lymphocytes T régulateurs , Facteur de croissance transformant bêta/pharmacologie
7.
Leukemia ; 35(8): 2243-2257, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-33414484

RÉSUMÉ

Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.


Sujet(s)
Immunothérapie adoptive/méthodes , Leucémie expérimentale/thérapie , Leucémie aigüe myéloïde/thérapie , Récepteurs aux antigènes des cellules T/immunologie , Lymphocytes T/transplantation , Animaux , Femelle , Humains , Leucémie expérimentale/immunologie , Leucémie expérimentale/anatomopathologie , Leucémie aigüe myéloïde/immunologie , Leucémie aigüe myéloïde/anatomopathologie , Souris , Souris de lignée NOD , Souris SCID , Lymphocytes T/immunologie , Cellules cancéreuses en culture , Tests d'activité antitumorale sur modèle de xénogreffe
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...