Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Allergy Clin Immunol ; 149(6): 1981-1991, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-34971648

RÉSUMÉ

BACKGROUND: Inhaled corticosteroid (ICS) response among patients with asthma is influenced by genetics, but biologically actionable insights based on associations have not been found. Various glucocorticoid response omics data sets are available to interrogate their biological effects. OBJECTIVE: We sought to identify functionally relevant ICS-response genetic associations by integrating complementary multiomics data sets. METHODS: Variants with P values less than 10-4 from a previous ICS-response genome-wide association study were reranked on the basis of integrative scores determined from (1) glucocorticoid receptor- and (2) RNA polymerase II-binding regions inferred from ChIP-Seq data for 3 airway cell types, (3) glucocorticoid response element motifs, (4) differentially expressed genes in response to glucocorticoid exposure according to 20 transcriptomic data sets, and (5) expression quantitative trait loci from GTEx. Candidate variants were tested for association with ICS response and asthma in 6 independent studies. RESULTS: Four variants had significant (q value < 0.05) multiomics integrative scores. These variants were in a locus consisting of 52 variants in high linkage disequilibrium (r2 ≥ 0.8) near glucocorticoid receptor-binding sites by the gene BIRC3. Variants were also BIRC3 expression quantitative trait loci in lung, and 2 were within/near putative glucocorticoid response element motifs. BIRC3 had increased RNA polymerase II occupancy and gene expression, with glucocorticoid exposure in 2 ChIP-Seq and 13 transcriptomic data sets. Some BIRC3 variants in the 52-variant locus were associated (P < .05) with ICS response in 3 independent studies and others with asthma in 1 study. CONCLUSIONS: BIRC3 should be prioritized for further functional studies of ICS response.


Sujet(s)
Asthme , Glucocorticoïdes , Hormones corticosurrénaliennes , Asthme/génétique , Asthme/métabolisme , Protéine-3 contenant des répétitions IAP baculovirales/génétique , Étude d'association pangénomique , Glucocorticoïdes/pharmacologie , Humains , Poumon/métabolisme , Polymorphisme de nucléotide simple , RNA polymerase II/génétique , Récepteurs aux glucocorticoïdes/génétique
2.
J Pediatr ; 211: 63-71.e6, 2019 08.
Article de Anglais | MEDLINE | ID: mdl-31176455

RÉSUMÉ

OBJECTIVE: To investigate racial and ethnic differences in pulmonary hypertension subtypes and survival differences in a pediatric population. STUDY DESIGN: This was a retrospective analysis of a cohort of patients with pulmonary hypertension (aged ≤18 years) enrolled in the Pediatric Pulmonary Hypertension Network registry between 2014 and 2018, comprising patients at eight Pediatric Centers throughout North America (n = 1417). RESULTS: Among children diagnosed after the neonatal period, pulmonary arterial hypertension was more prevalent among Asians (OR, 1.83; 95% CI, 1.21-2.79; P = .0045), lung disease-associated pulmonary hypertension among blacks (OR, 2.09; 95% CI, 1.48-2.95; P < .0001), idiopathic pulmonary arterial hypertension among whites (OR, 1.58; 95% CI, 1.06-2.41; P = .0289), and pulmonary veno-occlusive disease among Hispanics (OR, 6.11; 95% CI, 1.34-31.3; P = .0184). Among neonates, persistent pulmonary hypertension of the newborn (OR, 4.07; 95% CI, 1.54-10.0; P = .0029) and bronchopulmonary dysplasia (OR, 8.11; 95% CI, 3.28-19.8; P < .0001) were more prevalent among blacks, and congenital diaphragmatic hernia was more prevalent among whites (OR, 2.29; 95% CI, 1.25-4.18; P = .0070). An increased mortality risk was observed among blacks (HR, 1.99; 95% CI, 1.03-3.84; P = .0396), driven primarily by the heightened mortality risk among those with lung disease-associated pulmonary hypertension (HR, 2.84; 95% CI, 1.15-7.04; P = .0241). CONCLUSIONS: We found significant racial variability in the prevalence of pulmonary hypertension subtypes and survival outcomes among children with pulmonary hypertension. Given the substantial burden of this disease, further studies to validate phenotypic differences and to understand the underlying causes of survival disparities between racial and ethnic groups are warranted.


Sujet(s)
Pédiatrie/méthodes , Hypertension artérielle pulmonaire/ethnologie , Enregistrements , Adolescent , 1766 , Enfant , Enfant d'âge préscolaire , Ethnies , Femelle , Hispanique ou Latino , Humains , Nourrisson , Nouveau-né , Mâle , Amérique du Nord/épidémiologie , Prévalence , Hypertension artérielle pulmonaire/diagnostic , Hypertension artérielle pulmonaire/mortalité , 38409 , Analyse de régression , Reproductibilité des résultats , Études rétrospectives , Analyse de survie , Résultat thérapeutique , 38413
3.
Circ Res ; 121(4): 341-353, 2017 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-28611076

RÉSUMÉ

RATIONALE: Pediatric pulmonary hypertension (PH) is a heterogeneous condition with varying natural history and therapeutic response. Precise classification of PH subtypes is, therefore, crucial for individualizing care. However, gaps remain in our understanding of the spectrum of PH in children. OBJECTIVE: We seek to study the manifestations of PH in children and to assess the feasibility of applying a network-based approach to discern disease subtypes from comorbidity data recorded in longitudinal data sets. METHODS AND RESULTS: A retrospective cohort study comprising 6 943 263 children (<18 years of age) enrolled in a commercial health insurance plan in the United States, between January 2010 and May 2013. A total of 1583 (0.02%) children met the criteria for PH. We identified comorbidities significantly associated with PH compared with the general population of children without PH. A Bayesian comorbidity network was constructed to model the interdependencies of these comorbidities, and network-clustering analysis was applied to derive disease subtypes comprising subgraphs of highly connected comorbid conditions. A total of 186 comorbidities were found to be significantly associated with PH. Network analysis of comorbidity patterns captured most of the major PH subtypes with known pathological basis defined by the World Health Organization and Panama classifications. The analysis further identified many subtypes documented in only a few case studies, including rare subtypes associated with several well-described genetic syndromes. CONCLUSIONS: Application of network science to model comorbidity patterns recorded in longitudinal data sets can facilitate the discovery of disease subtypes. Our analysis relearned established subtypes, thus validating the approach, and identified rare subtypes that are difficult to discern through clinical observations, providing impetus for deeper investigation of the disease subtypes that will enrich current disease classifications.


Sujet(s)
Théorème de Bayes , Hypertension pulmonaire/classification , Hypertension pulmonaire/épidémiologie , Assurance maladie/classification , Enfant , Enfant d'âge préscolaire , Classification , Études de cohortes , Comorbidité , Humains , Hypertension pulmonaire/diagnostic , Assurance maladie/statistiques et données numériques , Études rétrospectives
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE