Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Int J Biol Macromol ; 277(Pt 3): 134334, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39094890

RÉSUMÉ

Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.


Sujet(s)
Liposomes , Simulation de docking moléculaire , Zingiber officinale , Zingiber officinale/composition chimique , Humains , Liposomes/composition chimique , Gels/composition chimique , Extraits de plantes/composition chimique , Extraits de plantes/pharmacologie , Alcools gras/composition chimique , Alcools gras/pharmacologie , Catéchols/composition chimique , Catéchols/pharmacologie , Canaux cationiques TRPV/métabolisme , Anti-inflammatoires/pharmacologie , Anti-inflammatoires/composition chimique , Libération de médicament , Cires/composition chimique , Cires/pharmacologie
2.
Nanoscale Adv ; 6(5): 1467-1479, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38419876

RÉSUMÉ

Garcinia mangostana extract (GME) has severe pharmacokinetic deficiencies and is made up of a variety of bioactive components. GME has proven its anti-Acanthamoeba effectiveness. In this investigation, a GME-loaded niosome was developed to increase its potential therapeutic efficacy. A GME-loaded niosome was prepared by encapsulation in a mixture of span60, cholesterol, and chloroform by the thin film hydration method. The vesicle size, zeta potential, percentage of entrapment efficiency, and stability of GME-loaded niosomes were investigated. The values for GME-loaded niosome size and zeta potential were 404.23 ± 4.59 and -32.03 ± 0.95, respectively. The delivery system enhanced the anti-Acanthamoeba activity, which possessed MIC values of 0.25-4 mg mL-1. In addition, the niosomal formulation decreased the toxicity of GME by 16 times. GME-loaded niosome must be stored at 4 °C, as the quantity of remaining GME encapsulated is greater at this temperature than at room temperature. SEM revealed the damage to the cell membrane caused by trophozoites and cysts, which led to dead cells. In light of the above, it was found that GME-loaded niosomes had better anti-Acanthamoeba activity. The study suggested that GME-loaded niosomes could be used as an alternative to Acanthamoeba's therapeutic effects.

3.
ACS Omega ; 9(6): 6901-6911, 2024 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-38371838

RÉSUMÉ

The controlled release of cyclosporine A (CsA) microencapsulated in alginate microbeads is a novel drug delivery system for the treatment of inflammatory diseases. In this study, CsA-loaded nanospheres encapsulated in alginate microbeads were applied to evaluate their controlled release profile and anti-inflammatory activity. Initially, a controlled-release drug delivery system was created by encapsulating CsA-loaded PLGA nanospheres within alginate microbeads. CsA-loaded PLGA nanospheres had a diameter of 418.70 ± 59.08 nm, a zeta potential of -22 ± 0.57 mV, and a polydispersity index of 0.517 ± 0.010. CsA-loaded nanosphere-encapsulated alginate microbeads were stable for 37 days. After encapsulating CsA-loaded PLGA nanospheres in the alginate microbeads, 5.60% of CsA was released after 24 h, and approximately 85.90% of the drugs were diffused until day 64. The cytotoxic and anti-inflammatory properties of the CsA released from the microbeads were evaluated in vitro using a murine macrophage cell line (RAW 264.7 cells). CsA-loaded nanosphere-encapsulated alginate microbeads inhibited 39.47 ± 1.71% of nitric oxide production from the RAW 264.7 cells on day 3, whereas nanosphere-encapsulated alginate microbeads inhibited 18.45 ± 1.56% only. CsA released from CsA-loaded nanosphere-encapsulated alginate microbeads had a RAW cell viability of 82.73 ± 5.58% on day 3 compared to 87.59 ± 0.69% of nanosphere-encapsulated alginate microbeads. The efficacy of the CsA-loaded nanosphere-encapsulated alginate microbeads in protecting the immune system via a controlled drug delivery system was established through anti-inflammatory and cell viability evaluation. Based on this research, the controlled release of CsA-loaded nanosphere-encapsulated alginate microbeads provides an innovative treatment for inflammatory diseases.

4.
BMC Complement Med Ther ; 24(1): 84, 2024 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-38350963

RÉSUMÉ

INTRODUCTION: Zingiber officinale extract has emerged as a compelling candidate for green synthesis of nanoparticles, offering diverse applications across medicine, cosmetics, and nutrition. This study delves into the investigation of in vitro toxicity and explores the biomedical utility of green-synthesized silver nanoparticles derived from ginger extract (GE-AgNPs). METHODS: We employed established protocols to evaluate in vitro aspects such as antioxidant capacity, anti-inflammatory potential, and biocompatibility of GE-AgNPs. Additionally, molecular docking was employed to assess their anti-lipoxygenase (anti-LOX) activity. RESULTS: Our findings highlight that the extraction of ginger extract at a pH of 6, utilizing a cosolvent blend of ethanol and ethyl acetate in a 1:1 ratio, yields heightened antioxidant capacity attributed to its rich phenolic and flavonoid content. In the context of silver nanoparticle synthesis, pH 6 extraction yields the highest quantity of nanoparticles, characterized by an average size of 32.64 ± 1.65 nm. Of particular significance, GE-AgNPs (at pH 6) demonstrated remarkable efficacy in scavenging free radicals, as evidenced by an IC50 value of 6.83 ± 0.47 µg/mL. The results from the anti-LOX experiment indicate that GE-AgNPs, at a concentration of 10 µg/mL, can inhibit LOX activity by 25%, outperforming ginger extract which inhibits LOX by 17-18%. Notably, clionasterol exhibited higher binding energy and enhanced stability (-8.9 kcal/mol) compared to nordihydroguaiaretic acid. Furthermore, a cell viability study confirmed the safety of GE-AgNPs at a concentration of 17.52 ± 7.00 µg/mL against the L929 cell line. CONCLUSION: These comprehensive findings underscore the significant biomedical advantages of GE-AgNPs and emphasize their potential incorporation into cosmetic products at a maximum concentration of 10 µg/mL.


Sujet(s)
Nanoparticules métalliques , Extraits de plantes , Zingiber officinale , Antibactériens/pharmacologie , Argent/pharmacologie , Argent/composition chimique , Antioxydants/pharmacologie , Antioxydants/composition chimique , Nanoparticules métalliques/composition chimique , Simulation de docking moléculaire
5.
J Mech Behav Biomed Mater ; 151: 106339, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38184930

RÉSUMÉ

Polycaprolactone (PCL) and carboxymethyl cellulose (CMC) are two materials with beneficial properties for wound healing applications. Here, the simple preparation of PCL/CMC polymer films via the crosslinking method was demonstrated for the first time. The polymer films represented the suitable properties of liquid absorption and tensile strength to be used as a wound dressing. The blend polymer films can also load the vancomycin, which prolongs the drug release for effectiveness against S. aureus. The trifluoroethanol showed less toxicity in comparison with other crosslinking agents. This process can also be applied further in other medical devices and wound healing applications.


Sujet(s)
Carboxyméthylcellulose de sodium , Polyesters , Vancomycine , Vancomycine/pharmacologie , Polymères , Staphylococcus aureus , Antibactériens/pharmacologie , Bandages
6.
Int J Mol Sci ; 24(9)2023 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-37175777

RÉSUMÉ

Bacterial meningitis remains one of the most prevalent infectious diseases worldwide. Although advances in medical care have improved mortality and morbidity, neurological complications remain high. Therefore, aside from antibiotics, therapeutic adjuvants targeting neuroinflammation are essential to combat the long-term neuronal sequelae of bacterial meningitis. In the present study, we propose (-)-dendroparishiol as a potential add-on therapy to improve neuroinflammation associated with bacterial meningitis. The biological activity of (-)-dendroparishiol was first predicted by computational analysis and further confirmed in vitro using a cell-based assay with LPS-induced BV-2 microglial cells. Biological pathways involved with (-)-dendroparishiol were identified by applying network pharmacology. Computational predictions of biological activity indicated possible attenuation of several inflammatory processes by (-)-dendroparishiol. In LPS-induced BV-2 microglial cells, (-)-dendroparishiol significantly reduced the expression of inflammatory mediators: iNOS, NO, COX-2, IL-6, and TNF-α. Molecular docking results demonstrated the potential iNOS and COX-2 inhibitory activity of (-)-dendroparishiol. Network pharmacological analysis indicated the plausible role of (-)-dendroparishiol in biological processes involved in oxidative stress and neuroinflammation with enrichment in neuroinflammatory pathways. Overall, this study provides scientific evidence for the potential application of (-)-dendroparishiol in the management of bacterial meningitis-associated neuroinflammation.


Sujet(s)
Inflammation , Méningite bactérienne , Humains , Inflammation/métabolisme , Maladies neuro-inflammatoires , Lipopolysaccharides/effets indésirables , Simulation de docking moléculaire , Pharmacologie des réseaux , Microglie/métabolisme , Méningite bactérienne/métabolisme , Facteur de transcription NF-kappa B/métabolisme
7.
BMC Complement Med Ther ; 23(1): 25, 2023 Jan 30.
Article de Anglais | MEDLINE | ID: mdl-36717857

RÉSUMÉ

INTRODUCTION: Bioactive compounds from traditional medicines are good alternatives to standard diabetes therapies and may lead to new therapeutic discoveries. The stems of Bauhinia strychnifolia Craib. (BC) have a possible antihyperglycemic effect; However, the extraction of astilbin from BC has never been recorded in alpha-glucosidase inhibitory activities. METHODS: Using liquid chromatography-mass spectrometry (LC-MS/MS), 32 compounds were detected in the BC extract. The screening was based on peak area. Seven compounds found. PASS recognized all seven compounds as potential alpha-glucosidase (AG) inhibitors. Astilbin and quercetin 3-rhamnoside were the most likely inhibitors of AG. Arguslab, AutoDock, and AutoDock Vina investigated the binding of the two compounds and AG. The binding stability was confirmed by molecular dynamics (MD). In addition, the optimum solvent extraction was studied via CosmoQuick, and extracts were examined with 1H-NMR prior to testing with AG. RESULTS: All three software programs demonstrated that both compounds inhibit AG more effectively than acarbose. According to the sigma profile, THF is recommended for astilbin extraction. The BC extract with THF showed outstanding AG inhibitory action with an IC50 of 158 ± 1.30 µg mL-1, which was much lower than that of the positive control acarbose (IC50 = 190 ± 6.97 µg mL-1). In addition, astilbin from BC was found to inhibit AG strongly, IC50 = 22.51 ± 0.70 µg mL-1 through the extraction method of large-scale astilbin with THF has the best extraction capacity compared to other solvents, hence the initial stage of extraction employs THF to extract and precipitate them with ethyl acetate and water. CONCLUSION: In silico and in vitro studies reveal that astilbin inhibits AG and is superior to acarbose, validating its promise as an AG inhibitor. Overall, astilbin was the most bioactive component of BC for antidiabetic action.


Sujet(s)
Bauhinia , Bauhinia/métabolisme , alpha-Glucosidase/métabolisme , Extraits de plantes/composition chimique , Acarbose , Chromatographie en phase liquide , Spectrométrie de masse en tandem , Inhibiteurs des glycoside hydrolases/pharmacologie , Inhibiteurs des glycoside hydrolases/composition chimique , Hypoglycémiants/pharmacologie , Hypoglycémiants/composition chimique
8.
Heliyon ; 8(12): e12032, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-36506386

RÉSUMÉ

Most modern wound dressings assist the wound-healing process. In contrast, conventional wound dressings have limited antibacterial activity and promote sporadic fibroblast growth. Therefore, wound dressings with prolonged substance release must be improved. This research aimed to develop hydrogel films. These were synthesized from alginate and pectin, incorporated with mangosteen extract (ME), and encapsulated in niosomes (ME-loaded niosomes). Subsequently, we examined the in vitro release and physical characteristics of ME-loaded niosomes. These characteristics included particle pH, size, charge, polydispersity index (PDI), and drug loading properties. These properties included drug loading content (DLC), entrapment efficiency (EE), and yield (Y). Additionally, we examined the swelling ratio and biological characteristics of the hydrogel film. These characteristics included antibacterial activity, cytotoxicity (L929), cell attachment to the tested materials, cell migration, hemocompatibility, and in vivo irritation. Significant results were obtained using a 2:1 niosome preparation containing Span60 and cholesterol. Ratio influenced size, charge, PDI, DLC, EE, and Y. The results were 225.5 ± 5.83 nm, negatively charged, 0.38, 16.2 ± 0.87%, 64.8 ± 3.49%, and 87.3 ± 3.09%, respectively. Additionally, the release of encapsulated ME was pH sensitive because 85% of the ME can be released at a pH of 5.5 within seven days and decrease to 70% at a pH of 7.4. The maximum swelling ratios of patches with 0.5% and 1% Ca2+ crosslinking were 867 wt% and 1,025 wt%, respectively, after 30 min. These results suggested that a medium dose (15 mg) of niosomal ME incorporated in a hydrogel film provided better bacterial inhibition, cell migration, and cell adhesion in an in vitro model. Additionally, no toxicity was observed in the fibroblasts and red blood cells. Therefore, given the above-mentioned advantages, this product can be a promising candidate for wound dressing applications.

9.
Article de Anglais | MEDLINE | ID: mdl-36267084

RÉSUMÉ

Natural polymer-based hydrogel films possess considerable potential for use in biomedical applications and are excellent for wound healing. The purpose of this research was to use ionic crosslinking to improve the mechanical characteristics, absorption of fluid in the wound, and drug release behavior of Cassia alata L. (CA) extract loaded niosomes (CANs) that were incorporated in an alginate-pectin film (A/P). Then, chemically crosslinked A/P hydrogels were obtained by immersing them in different concentrations of calcium chloride (CaCl2) (0.5-1% w/v) for 15-120 s. The degree of crosslinking was controlled by both contact time and CaCl2 concentration. The optimal crosslinking conditions were 1% CaCl2 for 15 seconds. In this study, the following features of the hydrogel films were investigated: physical properties, morphological characteristics, drug loading, in vitro drug release, antibacterial activity, wound healing activity, cytocompatibility profiles, and hemocompatibility. The crosslinked hydrogel films maintained their physical integrity during use, with the 1% film attaining the best results in the shortest period (15 sec). Then, in vitro drug release from the films was examined. Crosslinking was observed to prolong the release of the CA extract from the hydrogel film. Finally, a cell viability experiment was conducted to evaluate the cytotoxicity profile. The A/P composite film exhibited excellent wound dressing qualities and good mechanical properties in preformulation testing. The in vitro drug release profile indicated that the A/P created a regulated drug release profile, and the cell viability experiment revealed that the film was nontoxic and hemocompatible. A/P composite films can be produced using CAN extract as a possible wound dressing. However, further studies in animals and humans are required to determine both safety and effectiveness.

10.
Molecules ; 27(19)2022 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-36234875

RÉSUMÉ

Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.


Sujet(s)
Kératite à Acanthamoeba , Acanthamoeba , Kératite à Acanthamoeba/parasitologie , Humains , Ligands , Simulation de docking moléculaire , Simulation de dynamique moléculaire , Tubuline , Xanthones
11.
Saudi J Biol Sci ; 29(9): 103389, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35935103

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is a new coronavirus strain that was first reported in December 2019 in Wuhan, China. A specific treatment for COVID-19 has yet to be identified. Potential therapeutic targets include SARS-CoV-2 main protease (Mpro) and the SARS-CoV-2 spike-ACE2 interaction. Molecular docking, molecular dynamics (MD), solvent screening for the extraction of the specified compounds, and prediction of the drug properties of certain molecules were the methods used in this study to investigate compounds from the medicinal plant Myristica fragrans, which is one of twelve herbs in Prasachandaeng remedy (PSD). ArgusLab, AutoDock Vina, and AutoDock were used to perform docking tasks. The examined ligands were compared with panduratin A as a standard (Kanjanasirirat et al., 2020), which is a promising medicinal plant molecule for the treatment of COVID-19. Molecular docking revealed that malabaricones B and C and licarins A, B and C bound to SARS-CoV-2/ACE2 and SARS-CoV-2 Mpro with low binding energies compared to that of the standard ligand. Furthermore, appropriate solvent usage is important. Acetone was selected by COSMOquick software for compound extraction in this investigation because it can extract large amounts of all five of the abovementioned M. fragrans compounds. Furthermore, the drug-like properties of these compounds were studied utilizing the Lipinski, Veber, and Ghose criteria. The results revealed that these M. fragrans compounds have potential as effective medicines to combat the COVID-19 pandemic. However, to assess the therapeutic potential of these ligands, additional research is needed, which will use our findings as a foundation.

12.
Plants (Basel) ; 11(14)2022 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-35890469

RÉSUMÉ

PCSK9 is a promising target for developing novel cholesterol-lowering drugs. We developed a recipe that combined molecular docking, GC-MS/MS, and real-time PCR to identify potential PCSK9 inhibitors for herb ratio determination. Three herbs, Carthamus tinctorius, Coscinium fenestratum, and Zingiber officinale, were used in this study. This work aimed to evaluate cholesterol-lowering through a PCSK9 inhibitory mechanism of these three herbs for defining a suitable ratio. Chemical constituents were identified using GC-MS/MS. The PCSK9 inhibitory potential of the compounds was determined using molecular docking, real-time PCR, and Oil red O staining. It has been shown that most of the active compounds of C. fenestratum and Z. officinale inhibit PCSK9 when extracted with water, and C. fenestratum has been shown to yield tetraacetyl-d-xylonic nitrile (27.92%) and inositol, 1-deoxy-(24.89%). These compounds could inhibit PCSK9 through the binding of 6 and 5 hydrogen bonds, respectively, while the active compound in Z. officinale is 2-Formyl-9-[.beta.-d-ribofuranosyl] hypoxanthine (4.37%) inhibits PCSK9 by forming 8 hydrogen bonds. These results suggest that a recipe comprising three parts C. fenestratum, two parts Z. officinale, and one part C. tinctorius is a suitable herbal ratio for reducing lipid levels in the bloodstream through a PCSK9 inhibitory mechanism.

13.
Heliyon ; 7(9): e08078, 2021 Sep.
Article de Anglais | MEDLINE | ID: mdl-34632145

RÉSUMÉ

The number of patients with type 2 diabetes mellitus (T2DM) has increased worldwide. Although an instant cure was achieved with the standard treatment acabose, unsatisfactory symptoms associated with cardiovascular disease after acabose administration have been reported. Therefore, it is important to explore new treatments. A Thai folk recipe has long been used for T2DM treatment, and it effectively decreases blood glucose. However, the mechanism of this recipe has never been proven. Therefore, the potential anti-T2DM effect of this recipe, which is used in Thai hospitals, was determined to involve alpha-glucosidase (AG) inhibition with a half maximal inhibitory concentration (IC50). In vitro experiments showed that crude Cinnamomum verum extract (IC50 = 0.35 ± 0.12 mg/mL) offered excellent inhibitory activity, followed by extracts from Tinospora crispa (IC50 = 0.69 ± 0.39 mg/mL), Stephania suberosa (IC50 = 1.50 ± 0.17 mg/mL), Andrographis paniculate (IC50 = 1.78 ± 0.35 mg/mL), and Thunbergia laurifolia (IC50 = 4.66 ± 0.27 mg/mL). However, the potencies of these extracts were lower than that of acabose (IC50 = 0.55 ± 0.11 mg/mL). Therefore, this study investigated and developed a formulation of this recipe using computational docking. Among 61 compounds, 7 effectively inhibited AG, including chlorogenic acid (IC50 = 819.07 pM) through 5 hydrogen bonds (HBs) and 2 hydrophobic interactions (HIs); ß-sitosterol (IC50 = 4.46 nM, 6 HIs); ergosterol peroxide (IC50 = 4.18 nM, 6 HIs); borapetoside D (IC50 = 508.63 pM, 7 HBs and 2 HIs); borapetoside A (IC50 = 1.09 nM, 2 HBs and 2 His), stephasubimine (IC50 = 285.37 pM, 6 HIs); and stephasubine (IC50 = 1.09 nM, 3 HBs and 4 HIs). These compounds bind with high affinity to different binding pockets, leading to additive effects. Moreover, the pharmacokinetics of six of these seven compounds (except ergosterol peroxide) showed poor absorption in the gastrointestinal tract, which would allow for competitive binding to AG in the small intestine. These results indicate that the development of these 6 compounds into oral antidiabetic agents is promising.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE