Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chem Commun (Camb) ; 60(30): 4056-4059, 2024 Apr 09.
Article de Anglais | MEDLINE | ID: mdl-38505958

RÉSUMÉ

Designing well-defined Zn-complexes for sustainable dehydrogenative catalysis overcoming the difficulties associated with activating Zn2+(d10)-metal species is considered paramount goal in catalysis. Herein, we explore the plausibility of ß-alkylation of secondary alcohols with primary alcohols by well-defined 3d10 Zn-complexes. Detailed organometallic and catalytic investigations, in conjunction with computational analyses, were conducted to ascertain the potential involvement of the catalyst at various stages of the catalytic process.

2.
Org Lett ; 26(2): 514-518, 2024 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-38194364

RÉSUMÉ

In this work, we have constructed three new Co(II) complexes in which steric features govern their structural geometry. The metal ligand-cooperation behavior of the alkoxy arm is utilized to explore the catalytic activities of these complexes with respect to dehydrogenation. A wide range of C-3-substituted quinoline and quinazoline derivatives were synthesized in high yields. The developed protocol's usefulness is enhanced by the chemoselective transformation of different fatty alcohols to synthesize heterocycles having distal unsaturation. Various kinetic, mechanistic, and control studies were conducted to comprehend the reaction route.

3.
ChemSusChem ; 17(7): e202301138, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38096176

RÉSUMÉ

The development of innovative synthetic strategies for constructing complex molecular structures is the heart of organic chemistry. This significance of novel reactions or reaction sequences would further enhance if they permitted the synthesis of new classes of structural motifs, which have not been previously created. The research on the synthesis of heterocyclic compounds is one of the most active topics in organic chemistry due to the widespread application of N-heterocycles in life and material science. The development of a new catalytic process that employs first-row transition metals to produce a range of heterocycles from renewable raw materials is considered highly sustainable approach. This would be more advantageous if done in an eco-friendly and atom-efficient manner. Herein we introduce, the synthesis of various new quinoline based azafluorenes via sequential dehydrogenative multicomponent reaction (MCR) followed by C(sp3)-H hydroxylation and annulation. Our newly developed, Mn-complexes have the ability to direct the reaction in order to achieve a high amount of desired functionalized heterocycles while minimizing the possibility of multiple side reactions. We also performed a series of control experiments, hydride trapping experiments, reaction kinetics, catalytic intermediate and DFT studies to comprehend the detailed reaction route and the catalyst's function in the MCR sequence.

4.
Chemistry ; 30(6): e202303315, 2024 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-37933814

RÉSUMÉ

Catalytic activities of Mn(I) complexes derived from expensive MnBr(CO)5 salt have been explored in various dehydrogenative transformations. However, the reactivity and selectivity of inexpensive high spin Mn(II) complexes are uncommon. Herein, we have synthesized four new Mn(II) complexes and explored switchable alkenylation and alkylation of methyl heteroarenes employing a single Mn(II)catalyst. The developed protocol selectively furnishes a series of functionalized E-heteroarenes and C-alkylated heteroarenes with good to excellent yields. Various medicinally and synthetically useful compounds are successfully synthesized using our developed protocol. Various controls and kinetics experiments were executed to shed light on the mechaism,which reveals that α-C-H bond breaking of alcohol is the slowest step.

5.
Chem Commun (Camb) ; 59(60): 9267-9270, 2023 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-37431578

RÉSUMÉ

Herein, we describe acridine-based SNS-Ru pincer-catalysed unprecedented dehydrogenative annulation of alcohols with 2'-aminoacetophenone to synthesize 2,3-disubstituted-4-quinolones. The developed protocol was utilized with a wide range of alcohols with various aminoacetophenones. To expand the synthetic utility, 4-quinolones with antibiotic properties were synthesized and various important post-synthetic modifications of the synthesized scaffolds were performed. Various control experiments were performed to understand the mechanism, which showed that C-alkylation has the edge over N-alkylation and referred to the possibility of in situ alkenylation to branched ketones.

6.
J Org Chem ; 87(6): 3989-4000, 2022 03 18.
Article de Anglais | MEDLINE | ID: mdl-35258302

RÉSUMÉ

Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates including nine structurally important drug molecules are synthesized. Furthermore, we also introduced a one-pot cascade strategy for synthesizing C-3 functionalized indoles directly from 2-aminophenyl ethanol and alcohol.


Sujet(s)
Indoles , Méthane , Catalyse , Éthanol , Indoles/composition chimique , Méthane/composition chimique
7.
Chem Commun (Camb) ; 57(80): 10363-10366, 2021 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-34541595

RÉSUMÉ

The usage of earth-abundant, nontoxic transition metals in place of rare noble metals is a central goal in catalysis. This would be especially interesting when the reactivity and selectivity patterns can be tuned. Herein, we introduced the first Mn-catalyzed selective C-alkylation and olefination of fluorene, and indene with alcohols. Various substrates including benzylic, heteroaromatic, and aliphatic primary and secondary alcohols are employed as alkylating agents. Mechanistic investigations and a kinetic study underpin the involvement of the olefinated intermediate to furnish the alkylated product.

8.
Org Lett ; 21(9): 3223-3227, 2019 05 03.
Article de Anglais | MEDLINE | ID: mdl-31008616

RÉSUMÉ

A sustainable synthesis of quinazoline and 2-aminoquinoline via acceptorless dehydrogenative annulation is presented. The reaction is catalyzed by earth-abundant well-defined manganese complexes bearing NNS ligands. Furthermore, a one-pot synthetic strategy for the synthesis of 2-alkylaminoquinolines through sequential dehydrogenative annulation and N-alkylation reaction has also been demonstrated.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...