Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2024 Jun 09.
Article de Anglais | MEDLINE | ID: mdl-38895406

RÉSUMÉ

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression programme at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C and RNA-seq. We find that cohesin is required for the full induction of the regenerative transcriptional program, by organising 3D genomic domains required for the activation of regenerative genes. Importantly, loss of cohesin results in disruption of chromatin architecture at regenerative genes and severely impaired nerve regeneration. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent chromatin interactions in neuronal regeneration.

2.
FASEB J ; 38(10): e23659, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38733301

RÉSUMÉ

HDAC3 inhibition has been shown to improve memory and reduce amyloid-ß (Aß) in Alzheimer's disease (AD) models, but the underlying mechanisms are unclear. We investigated the molecular effects of HDAC3 inhibition on AD pathology, using in vitro and ex vivo models of AD, based on our finding that HDAC3 expression is increased in AD brains. For this purpose, N2a mouse neuroblastoma cells as well as organotypic brain cultures (OBCSs) of 5XFAD and wild-type mice were incubated with various concentrations of the HDAC3 selective inhibitor RGFP966 (0.1-10 µM) for 24 h. Treatment with RGFP966 or HDAC3 knockdown in N2a cells was associated with an increase on amyloid precursor protein (APP) and mRNA expressions, without alterations in Aß42 secretion. In vitro chromatin immunoprecipitation analysis revealed enriched HDAC3 binding at APP promoter regions. The increase in APP expression was also detected in OBCSs from 5XFAD mice incubated with 1 µM RGFP966, without changes in Aß. In addition, HDAC3 inhibition resulted in a reduction of activated Iba-1-positive microglia and astrocytes in 5XFAD slices, which was not observed in OBCSs from wild-type mice. mRNA sequencing analysis revealed that HDAC3 inhibition modulated neuronal regenerative pathways related to neurogenesis, differentiation, axonogenesis, and dendritic spine density in OBCSs. Our findings highlight the complexity and diversity of the effects of HDAC3 inhibition on AD models and suggest that HDAC3 may have multiple roles in the regulation of APP expression and processing, as well as in the modulation of neuroinflammatory and neuroprotective genes.


Sujet(s)
Maladie d'Alzheimer , Précurseur de la protéine bêta-amyloïde , Histone deacetylases , Animaux , Souris , Acrylamides , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/anatomopathologie , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Encéphale/métabolisme , Encéphale/anatomopathologie , Lignée cellulaire tumorale , Modèles animaux de maladie humaine , Inhibiteurs de désacétylase d'histone/pharmacologie , Histone deacetylases/métabolisme , Histone deacetylases/génétique , Souris de lignée C57BL , Souris transgéniques , Microglie/métabolisme , Phénylènediamines/pharmacologie
3.
J Neuroinflammation ; 21(1): 91, 2024 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-38609999

RÉSUMÉ

OBJECTIVE: Soluble CD27 is a promising cerebrospinal fluid inflammatory biomarker in multiple sclerosis. In this study, we investigate relevant immune and neuro-pathological features of soluble CD27 in multiple sclerosis. METHODS: Protein levels of soluble CD27 were correlated to inflammatory cell subpopulations and inflammatory cytokines and chemokines detected in cerebrospinal fluid of 137 patients with multiple sclerosis and 47 patients with inflammatory and non-inflammatory neurological disease from three independent cohorts. Production of soluble CD27 was investigated in cell cultures of activated T and B cells and CD27-knockout T cells. In a study including matched cerebrospinal fluid and post-mortem brain tissues of patients with multiple sclerosis and control cases, levels of soluble CD27 were correlated with perivascular and meningeal infiltrates and with neuropathological features. RESULTS: We demonstrate that soluble CD27 favours the differentiation of interferon-γ-producing T cells and is released through a secretory mechanism activated by TCR engagement and regulated by neutral sphingomyelinase. We also show that the levels of soluble CD27 correlate with the representation of inflammatory T cell subsets in the CSF of patients with relapsing-remitting multiple sclerosis and with the magnitude of perivascular and meningeal CD27 + CD4 + and CD8 + T cell infiltrates in post-mortem central nervous system tissue, defining a subgroup of patients with extensive active inflammatory lesions. INTERPRETATION: Our results demonstrate that soluble CD27 is a biomarker of disease activity, potentially informative for personalized treatment and monitoring of treatment outcomes.


Sujet(s)
Sclérose en plaques récurrente-rémittente , Sclérose en plaques , Humains , Lymphocytes T CD8+ , Système nerveux central , Marqueurs biologiques
4.
Cell Metab ; 35(12): 2153-2164.e4, 2023 12 05.
Article de Anglais | MEDLINE | ID: mdl-37951214

RÉSUMÉ

Nerve injuries cause permanent neurological disability due to limited axonal regeneration. Injury-dependent and -independent mechanisms have provided important insight into neuronal regeneration, however, common denominators underpinning regeneration remain elusive. A comparative analysis of transcriptomic datasets associated with neuronal regenerative ability revealed circadian rhythms as the most significantly enriched pathway. Subsequently, we demonstrated that sensory neurons possess an endogenous clock and that their regenerative ability displays diurnal oscillations in a murine model of sciatic nerve injury. Consistently, transcriptomic analysis showed a time-of-day-dependent enrichment for processes associated with axonal regeneration and the circadian clock. Conditional deletion experiments demonstrated that Bmal1 is required for neuronal intrinsic circadian regeneration and target re-innervation. Lastly, lithium enhanced nerve regeneration in wild-type but not in clock-deficient mice. Together, these findings demonstrate that the molecular clock fine-tunes the regenerative ability of sensory neurons and propose compounds affecting clock pathways as a novel approach to nerve repair.


Sujet(s)
Horloges circadiennes , Souris , Animaux , Horloges circadiennes/génétique , Rythme circadien , Régénération nerveuse/physiologie , Cellules réceptrices sensorielles , Facteurs de transcription ARNTL/génétique
5.
Methods Mol Biol ; 2636: 101-144, 2023.
Article de Anglais | MEDLINE | ID: mdl-36881298

RÉSUMÉ

RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase-accessible chromatin sequencing (ATAC-seq) are genome-wide techniques that provide information relative to gene expression, chromatin binding sites, and chromatin accessibility, respectively. Here we describe RNA-seq, H3K9ac, H3K27ac and H3K27me3 ChIP-seq, and ATAC-seq in dorsal root ganglia (DRG) after sciatic nerve or dorsal column axotomy, to characterize the transcriptional and epigenetic signatures of DRG upon regenerative vs non-regenerative axonal lesion.


Sujet(s)
Épigénomique , Ganglions sensitifs des nerfs spinaux , Axones , Axotomie , Chromatine
6.
Science ; 376(6594): eabd5926, 2022 05 13.
Article de Anglais | MEDLINE | ID: mdl-35549409

RÉSUMÉ

Aging is associated with increased prevalence of axonal injuries characterized by poor regeneration and disability. However, the underlying mechanisms remain unclear. In our experiments, RNA sequencing of sciatic dorsal root ganglia (DRG) revealed significant aging-dependent enrichment in T cell signaling both before and after sciatic nerve injury (SNI) in mice. Lymphotoxin activated the transcription factor NF-κB, which induced expression of the chemokine CXCL13 by neurons. This in turn recruited CXCR5+CD8+ T cells to injured DRG neurons overexpressing major histocompatibility complex class I. CD8+ T cells repressed the axonal regeneration of DRG neurons via caspase 3 activation. CXCL13 neutralization prevented CXCR5+CD8+ T cell recruitment to the DRG and reversed aging-dependent regenerative decline, thereby promoting neurological recovery after SNI. Thus, axonal regeneration can be facilitated by antagonizing cross-talk between immune cells and neurons.


Sujet(s)
Vieillissement , Axones , Lymphocytes T CD8+ , Ganglions sensitifs des nerfs spinaux , Régénération nerveuse , Neurones , Nerf ischiatique , Vieillissement/métabolisme , Animaux , Axones/physiologie , Lymphocytes T CD8+/métabolisme , Ganglions sensitifs des nerfs spinaux/métabolisme , Souris , Neurones/métabolisme , Nerf ischiatique/traumatismes , Nerf ischiatique/physiologie
7.
Nat Commun ; 11(1): 6425, 2020 12 21.
Article de Anglais | MEDLINE | ID: mdl-33349630

RÉSUMÉ

Overcoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries.


Sujet(s)
Régénération nerveuse , Cellules réceptrices sensorielles/métabolisme , Cellules réceptrices sensorielles/anatomopathologie , Transduction du signal , Traumatismes de la moelle épinière/physiopathologie , Animaux , Axones/anatomopathologie , Axotomie , Ganglions sensitifs des nerfs spinaux/anatomopathologie , Souris de lignée C57BL , NADPH Oxidase 2/métabolisme , Excroissance neuronale , Plasticité neuronale , Oxydoréduction , Phosphorylation , Régions promotrices (génétique)/génétique , Protéine kinase C/métabolisme , Sous-unités de protéines/métabolisme , Espèces réactives de l'oxygène/métabolisme , Facteur de transcription STAT-3/métabolisme , Nerf ischiatique/physiopathologie , Régulation positive
8.
Nat Metab ; 2(9): 918-933, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32778834

RÉSUMÉ

Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury.


Sujet(s)
AMP-Activated Protein Kinases/métabolisme , Axones , Ganglions sensitifs des nerfs spinaux/métabolisme , Régénération nerveuse , Cellules réceptrices sensorielles/métabolisme , Traumatismes de la moelle épinière/métabolisme , ATPases associated with diverse cellular activities/métabolisme , Animaux , Transport axonal , Axotomie , Calcium-Calmodulin-Dependent Protein Kinase Type 2/métabolisme , Femelle , Ganglions sensitifs des nerfs spinaux/anatomopathologie , Souris , Souris de lignée C57BL , Proteasome endopeptidase complex/métabolisme , Protéomique , Nerf ischiatique/métabolisme , Nerf ischiatique/anatomopathologie , Cellules réceptrices sensorielles/anatomopathologie , Traumatismes de la moelle épinière/anatomopathologie
9.
Sci Transl Med ; 12(551)2020 07 08.
Article de Anglais | MEDLINE | ID: mdl-32641489

RÉSUMÉ

Cyclin-dependent-like kinase 5 (CDKL5) gene mutations lead to an X-linked disorder that is characterized by infantile epileptic encephalopathy, developmental delay, and hypotonia. However, we found that a substantial percentage of these patients also report a previously unrecognized anamnestic deficiency in pain perception. Consistent with a role in nociception, we found that CDKL5 is expressed selectively in nociceptive dorsal root ganglia (DRG) neurons in mice and in induced pluripotent stem cell (iPS)-derived human nociceptors. CDKL5-deficient mice display defective epidermal innervation, and conditional deletion of CDKL5 in DRG sensory neurons impairs nociception, phenocopying CDKL5 deficiency disorder in patients. Mechanistically, CDKL5 interacts with calcium/calmodulin-dependent protein kinase II α (CaMKIIα) to control outgrowth and transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent signaling, which are disrupted in both CDKL5 mutant murine DRG and human iPS-derived nociceptors. Together, these findings unveil a previously unrecognized role for CDKL5 in nociception, proposing an original regulatory mechanism for pain perception with implications for future therapeutics in CDKL5 deficiency disorder.


Sujet(s)
Cellules réceptrices sensorielles , Transduction du signal , Animaux , Cyclines , Modèles animaux de maladie humaine , Humains , Souris , Douleur , Protein-Serine-Threonine Kinases/génétique
10.
Nat Neurosci ; 22(11): 1913-1924, 2019 11.
Article de Anglais | MEDLINE | ID: mdl-31591560

RÉSUMÉ

Axonal injury results in regenerative success or failure, depending on whether the axon lies in the peripheral or the CNS, respectively. The present study addresses whether epigenetic signatures in dorsal root ganglia discriminate between regenerative and non-regenerative axonal injury. Chromatin immunoprecipitation for the histone 3 (H3) post-translational modifications H3K9ac, H3K27ac and H3K27me3; an assay for transposase-accessible chromatin; and RNA sequencing were performed in dorsal root ganglia after sciatic nerve or dorsal column axotomy. Distinct histone acetylation and chromatin accessibility signatures correlated with gene expression after peripheral, but not central, axonal injury. DNA-footprinting analyses revealed new transcriptional regulators associated with regenerative ability. Machine-learning algorithms inferred the direction of most of the gene expression changes. Neuronal conditional deletion of the chromatin remodeler CCCTC-binding factor impaired nerve regeneration, implicating chromatin organization in the regenerative competence. Altogether, the present study offers the first epigenomic map providing insight into the transcriptional response to injury and the differential regenerative ability of sensory neurons.


Sujet(s)
Axones/physiologie , Épigénomique , Ganglions sensitifs des nerfs spinaux/physiologie , Régénération nerveuse/physiologie , Cellules réceptrices sensorielles/physiologie , Acétylation , Algorithmes , Animaux , Facteur de liaison à la séquence CCCTC/génétique , Chromatine/métabolisme , Femelle , Ganglions sensitifs des nerfs spinaux/traumatismes , Expression des gènes , Histone/métabolisme , Apprentissage machine , Mâle , Souris , Souris transgéniques , Nerf ischiatique/traumatismes , Analyse de séquence d'ARN
11.
EMBO J ; 38(13): e101032, 2019 07 01.
Article de Anglais | MEDLINE | ID: mdl-31268609

RÉSUMÉ

The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.


Sujet(s)
Ganglions sensitifs des nerfs spinaux/physiologie , Histone deacetylases/métabolisme , Lésions des nerfs périphériques/métabolisme , Phosphoprotein Phosphatases/métabolisme , Bibliothèques de petites molécules/pharmacologie , Animaux , Axones , Cellules cultivées , Modèles animaux de maladie humaine , Épigenèse génétique/effets des médicaments et des substances chimiques , Femelle , Mâle , Souris , Régénération nerveuse , Phosphorylation/effets des médicaments et des substances chimiques , Transduction du signal
12.
Sci Transl Med ; 11(487)2019 04 10.
Article de Anglais | MEDLINE | ID: mdl-30971452

RÉSUMÉ

After a spinal cord injury, axons fail to regenerate in the adult mammalian central nervous system, leading to permanent deficits in sensory and motor functions. Increasing neuronal activity after an injury using electrical stimulation or rehabilitation can enhance neuronal plasticity and result in some degree of recovery; however, the underlying mechanisms remain poorly understood. We found that placing mice in an enriched environment before an injury enhanced the activity of proprioceptive dorsal root ganglion neurons, leading to a lasting increase in their regenerative potential. This effect was dependent on Creb-binding protein (Cbp)-mediated histone acetylation, which increased the expression of genes associated with the regenerative program. Intraperitoneal delivery of a small-molecule activator of Cbp at clinically relevant times promoted regeneration and sprouting of sensory and motor axons, as well as recovery of sensory and motor functions in both the mouse and rat model of spinal cord injury. Our findings showed that the increased regenerative capacity induced by enhancing neuronal activity is mediated by epigenetic reprogramming in rodent models of spinal cord injury. Understanding the mechanisms underlying activity-dependent neuronal plasticity led to the identification of potential molecular targets for improving recovery after spinal cord injury.


Sujet(s)
Axones/physiologie , Protéine CBP/métabolisme , Environnement , Histone/métabolisme , Régénération nerveuse , Traumatismes de la moelle épinière/métabolisme , Traumatismes de la moelle épinière/physiopathologie , Acétylation , Animaux , Calcium/métabolisme , Modèles animaux de maladie humaine , Protéine p300-E1A/métabolisme , Ganglions sensitifs des nerfs spinaux/anatomopathologie , Ganglions sensitifs des nerfs spinaux/physiopathologie , Souris , Motoneurones/anatomopathologie , Proprioception , Récupération fonctionnelle , Cellules réceptrices sensorielles/anatomopathologie , Transduction du signal , Traumatismes de la moelle épinière/anatomopathologie
13.
PLoS One ; 13(7): e0200783, 2018.
Article de Anglais | MEDLINE | ID: mdl-30020994

RÉSUMÉ

In a variety of species, reduced food intake, and in particular protein or amino acid (AA) restriction, extends lifespan and healthspan. However, the underlying epigenetic and/or transcriptional mechanisms are largely unknown, and dissection of specific pathways in cultured cells may contribute to filling this gap. We have previously shown that, in mammalian cells, deprivation of essential AAs (methionine/cysteine or tyrosine) leads to the transcriptional reactivation of integrated silenced transgenes, including plasmid and retroviral vectors and latent HIV-1 provirus, by a process involving epigenetic chromatic remodeling and histone acetylation. Here we show that the deprivation of methionine/cysteine also leads to the transcriptional upregulation of endogenous retroviruses, suggesting that essential AA starvation affects the expression not only of exogenous non-native DNA sequences, but also of endogenous anciently-integrated and silenced parasitic elements of the genome. Moreover, we show that the transgene reactivation response is highly conserved in different mammalian cell types, and it is reproducible with deprivation of most essential AAs. The General Control Non-derepressible 2 (GCN2) kinase and the downstream integrated stress response represent the best candidates mediating this process; however, by pharmacological approaches, RNA interference and genomic editing, we demonstrate that they are not implicated. Instead, the response requires MEK/ERK and/or JNK activity and is reproduced by ribosomal inhibitors, suggesting that it is triggered by a novel nutrient-sensing and signaling pathway, initiated by translational block at the ribosome, and independent of mTOR and GCN2. Overall, these findings point to a general transcriptional response to essential AA deprivation, which affects the expression of non-native genomic sequences, with relevant implications for the epigenetic/transcriptional effects of AA restriction in health and disease.


Sujet(s)
Acides aminés essentiels/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Acides aminés essentiels/déficit , Animaux , Technique de Western , Systèmes CRISPR-Cas , Lignée cellulaire , Édition de gène , Cellules HeLa , Cellules HepG2 , Humains , Souris , Protein-Serine-Threonine Kinases/génétique , Interférence par ARN , Réaction de polymérisation en chaine en temps réel , Transduction du signal/génétique , Transduction du signal/physiologie , Activation de la transcription/génétique , Activation de la transcription/physiologie
14.
Neurotherapeutics ; 15(3): 529-540, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-29948919

RÉSUMÉ

Axonal regeneration relies on the expression of regenerative associated genes within a coordinated transcriptional programme, which is finely tuned as a result of the activation of several regenerative signalling pathways. In mammals, this chain of events occurs in neurons following peripheral axonal injury, however it fails upon axonal injury in the central nervous system, such as in the spinal cord and the brain. Accumulating evidence has been suggesting that epigenetic control is a key factor to initiate and sustain the regenerative transcriptional response and that it might contribute to regenerative success versus failure. This review will discuss experimental evidence so far showing a role for epigenetic regulation in models of peripheral and central nervous system axonal injury. It will also propose future directions to fill key knowledge gaps and to test whether epigenetic control might indeed discriminate between regenerative success and failure.


Sujet(s)
Épigenèse génétique/physiologie , Épigénomique/méthodes , Régénération nerveuse/physiologie , Animaux , Humains , Mammifères
15.
Nat Cell Biol ; 20(9): 1098, 2018 Sep.
Article de Anglais | MEDLINE | ID: mdl-29520084

RÉSUMÉ

In the version of this Article originally published, the affiliations for Roland A. Fleck and José Antonio Del Río were incorrect due to a technical error that resulted in affiliations 8 and 9 being switched. The correct affiliations are: Roland A. Fleck: 8Centre for Ultrastructural Imaging, Kings College London, London, UK. José Antonio Del Río: 2Cellular and Molecular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain; 9Department of Cell Biology, Physiology and Immunology, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; 10Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain. This has now been amended in all online versions of the Article.

16.
Nat Cell Biol ; 20(3): 307-319, 2018 03.
Article de Anglais | MEDLINE | ID: mdl-29434374

RÉSUMÉ

Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-ß1-dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K-phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2-PI3K-p-Akt signalling pathway.


Sujet(s)
Axones/enzymologie , Exosomes/enzymologie , Ganglions sensitifs des nerfs spinaux/enzymologie , NADPH Oxidase 2/métabolisme , Dégénérescence nerveuse , Régénération nerveuse , Lésions des nerfs périphériques/enzymologie , Espèces réactives de l'oxygène/métabolisme , Nerf ischiatique/enzymologie , Traumatismes de la moelle épinière/enzymologie , Animaux , Axones/anatomopathologie , Récepteur-1 de la chimiokine CX3C/métabolisme , Lignée cellulaire , Modèles animaux de maladie humaine , Dynéines/métabolisme , Endocytose , Endosomes/enzymologie , Endosomes/anatomopathologie , Exosomes/anatomopathologie , Ganglions sensitifs des nerfs spinaux/traumatismes , Ganglions sensitifs des nerfs spinaux/anatomopathologie , Macrophages/enzymologie , Macrophages/anatomopathologie , Souris de lignée C57BL , Souris knockout , NADPH Oxidase 2/déficit , NADPH Oxidase 2/génétique , Protéines nucléaires/métabolisme , Phosphohydrolase PTEN/métabolisme , Lésions des nerfs périphériques/génétique , Lésions des nerfs périphériques/anatomopathologie , Lésions des nerfs périphériques/physiopathologie , Phosphatidylinositol 3-kinase/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Nerf ischiatique/traumatismes , Nerf ischiatique/anatomopathologie , Nerf ischiatique/physiopathologie , Transduction du signal , Traumatismes de la moelle épinière/génétique , Traumatismes de la moelle épinière/anatomopathologie , Traumatismes de la moelle épinière/physiopathologie , Caryophérines bêta
18.
J Neurosci ; 36(43): 11107-11119, 2016 10 26.
Article de Anglais | MEDLINE | ID: mdl-27798190

RÉSUMÉ

Physiological levels of ROS support neurite outgrowth and axonal specification, but the mechanisms by which ROS are able to shape neurons remain unknown. Ca2+, a broad intracellular second messenger, promotes both Rac1 activation and neurite extension. Ca2+ release from the endoplasmic reticulum, mediated by both the IP3R1 and ryanodine receptor (RyR) channels, requires physiological ROS levels that are mainly sustained by the NADPH oxidase (NOX) complex. In this work, we explore the contribution of the link between NOX and RyR-mediated Ca2+ release toward axonal specification of rat hippocampal neurons. Using genetic approaches, we find that NOX activation promotes both axonal development and Rac1 activation through a RyR-mediated mechanism, which in turn activates NOX through Rac1, one of the NOX subunits. Collectively, these data suggest a feedforward mechanism that integrates both NOX activity and RyR-mediated Ca2+ release to support cellular mechanisms involved in axon development. SIGNIFICANCE STATEMENT: High levels of ROS are frequently associated with oxidative stress and disease. In contrast, physiological levels of ROS, mainly sustained by the NADPH oxidase (NOX) complex, promote neuronal development and axonal growth. However, the mechanisms by which ROS shape neurons have not been described. Our work suggests that NOX-derived ROS promote axonal growth by regulating Rac1 activity, a molecular determinant of axonal growth, through a ryanodine receptor (RyR)-mediated Ca2+ release mechanism. In addition, Rac1, one of the NOX subunits, was activated after RyR-mediated Ca2+ release, suggesting a feedforward mechanism between NOX and RyR. Collectively, our data suggest a novel mechanism that is instrumental in sustaining physiological levels of ROS required for axonal growth of hippocampal neurons.


Sujet(s)
Guidage axonal/physiologie , Signalisation calcique/physiologie , Rétrocontrôle physiologique/physiologie , NADPH oxidase/métabolisme , Neurones/physiologie , Canal de libération du calcium du récepteur à la ryanodine/métabolisme , Animaux , Calcium/métabolisme , Cellules cultivées , Femelle , Régulation de l'expression des gènes au cours du développement/physiologie , Hippocampe/physiologie , Hippocampe/ultrastructure , Mâle , Plasticité neuronale/physiologie , Rats , Rat Sprague-Dawley , Espèces réactives de l'oxygène/métabolisme
19.
Proc Natl Acad Sci U S A ; 109(34): E2284-93, 2012 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-22826225

RÉSUMÉ

The epigenetic silencing of exogenous transcriptional units integrated into the genome represents a critical problem both for long-term gene therapy efficacy and for the eradication of latent viral infections. We report here that limitation of essential amino acids, such as methionine and cysteine, causes selective up-regulation of exogenous transgene expression in mammalian cells. Prolonged amino acid deprivation led to significant and reversible increase in the expression levels of stably integrated transgenes transcribed by means of viral or human promoters in HeLa cells. This phenomenon was mediated by epigenetic chromatin modifications, because histone deacetylase (HDAC) inhibitors reproduced starvation-induced transgene up-regulation, and transcriptome analysis, ChIP, and pharmacological and RNAi approaches revealed that a specific class II HDAC, namely HDAC4, plays a critical role in maintaining the silencing of exogenous transgenes. This mechanism was also operational in cells chronically infected with HIV-1, the etiological agent of AIDS, in a latency state. Indeed, both amino acid starvation and pharmacological inhibition of HDAC4 promoted reactivation of HIV-1 transcription and reverse transcriptase activity production in HDAC4(+) ACH-2 T-lymphocytic cells but not in HDAC4(-) U1 promonocytic cells. Thus, amino acid deprivation leads to transcriptional derepression of silenced transgenes, including integrated plasmids and retroviruses, by a process involving inactivation or down-regulation of HDAC4. These findings suggest that selective targeting of HDAC4 might represent a unique strategy for modulating the expression of therapeutic viral vectors, as well as that of integrated HIV-1 proviruses in latent reservoirs without significant cytotoxicity.


Sujet(s)
Régulation négative , Régulation de l'expression des gènes codant pour des enzymes , Régulation de l'expression des gènes viraux , Extinction de l'expression des gènes , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/génétique , Histone deacetylases/biosynthèse , Histone deacetylases/génétique , Protéines de répression/biosynthèse , Protéines de répression/génétique , Albinisme oculaire/métabolisme , Méthylation de l'ADN , Protéines de l'oeil/métabolisme , Cellules HeLa , Humains , Glycoprotéines membranaires/métabolisme , Régions promotrices (génétique) , Provirus/génétique , Activation de la transcription , Transgènes , Facteur de nécrose tumorale alpha/métabolisme , Tyrosine/composition chimique
20.
Mob Genet Elements ; 2(5): 233-238, 2012 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-23550098

RÉSUMÉ

The endless battle between mammalian host cells and microbes has evolved mechanisms to shut down the expression of exogenous transcriptional units integrated into the genome with the goal of limiting their spreading. Recently, we observed that deprivation of essential amino acids leads to a selective, reversible upregulation of expression of exogenous transgenes, either carried by integrated plasmids or retroviral vectors, but not of their endogenous counterparts. This effect was dependent on epigenetic modifications and was mediated by the downregulation of the class II histone deacetylase-4 (HDAC4). Indeed, HDAC4 expression inversely correlated with that of the transgene and its inhibition or downregulation enhanced transgene expression. Could this be true also for "naturally" integrated proviruses? We investigated this question in the case of HIV-1, the etiological agent of AIDS and we observed that both amino acid starvation and HDAC4 inhibition triggered HIV-1 reactivation in chronically infected ACH-2 T lymphocytic cells (HDAC4+), but not in similarly infected U1 promonocytic cells (HDAC4-negative). Thus, an HDAC4-dependent pathway may contribute to unleash virus expression by latently infected cells, which represent nowadays a major obstacle to HIV eradication. We discuss here the implications and open questions of these novel findings, as well as their serendipitous prelude.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE