Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ISME J ; 17(10): 1774-1784, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37573455

RÉSUMÉ

Deep sea cold seep sediments have been discovered to harbor novel, abundant, and diverse bacterial and archaeal viruses. However, little is known about viral genetic features and evolutionary patterns in these environments. Here, we examined the evolutionary ecology of viruses across active and extinct seep stages in the area of Haima cold seeps in the South China Sea. A total of 338 viral operational taxonomic units are identified and linked to 36 bacterial and archaeal phyla. The dynamics of host-virus interactions are informed by diverse antiviral defense systems across 43 families found in 487 microbial genomes. Cold seep viruses are predicted to harbor diverse adaptive strategies to persist in this environment, including counter-defense systems, auxiliary metabolic genes, reverse transcriptases, and alternative genetic code assignments. Extremely low nucleotide diversity is observed in cold seep viral populations, being influenced by factors including microbial host, sediment depth, and cold seep stage. Most cold seep viral genes are under strong purifying selection with trajectories that differ depending on whether cold seeps are active or extinct. This work sheds light on the understanding of environmental adaptation mechanisms and evolutionary patterns of viruses in the sub-seafloor biosphere.


Sujet(s)
Eau de mer , Virus , Humains , Eau de mer/microbiologie , Sédiments géologiques/microbiologie , Biodiversité , Méthane , Phylogenèse , Bactéries/génétique , Virus/génétique , ARN ribosomique 16S/génétique
2.
Environ Sci Technol ; 57(10): 4354-4366, 2023 03 14.
Article de Anglais | MEDLINE | ID: mdl-36848522

RÉSUMÉ

Groundwater uranium (U) concentrations have been measured above the U.S. EPA maximum contaminant level (30 µg/L) in many U.S. aquifers, including in areas not associated with anthropogenic contamination by milling or mining. In addition to carbonate, nitrate has been correlated to uranium groundwater concentrations in two major U.S. aquifers. However, to date, direct evidence that nitrate mobilizes naturally occurring U from aquifer sediments has not been presented. Here, we demonstrate that the influx of high-nitrate porewater through High Plains alluvial aquifer silt sediments bearing naturally occurring U(IV) can stimulate a nitrate-reducing microbial community capable of catalyzing the oxidation and mobilization of U into the porewater. Microbial reduction of nitrate yielded nitrite, a reactive intermediate, which was further demonstrated to abiotically mobilize U from the reduced alluvial aquifer sediments. These results indicate that microbial activity, specifically nitrate reduction to nitrite, is one mechanism driving U mobilization from aquifer sediments in addition to previously described bicarbonate-driven desorption from mineral surfaces, such as Fe(III) oxides.


Sujet(s)
Nappe phréatique , Uranium , Polluants radioactifs de l'eau , Nitrates , Composés du fer III , Nitrites , Sédiments géologiques , Polluants radioactifs de l'eau/analyse
3.
mLife ; 2(3): 272-282, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-38817817

RÉSUMÉ

Lignin degradation is a major process in the global carbon cycle across both terrestrial and marine ecosystems. Bathyarchaeia, which are among the most abundant microorganisms in marine sediment, have been proposed to mediate anaerobic lignin degradation. However, the mechanism of bathyarchaeial lignin degradation remains unclear. Here, we report an enrichment culture of Bathyarchaeia, named Candidatus Baizosediminiarchaeum ligniniphilus DL1YTT001 (Ca. B. ligniniphilus), from coastal sediments that can grow with lignin as the sole organic carbon source under mesophilic anoxic conditions. Ca. B. ligniniphilus possesses and highly expresses novel methyltransferase 1 (MT1, mtgB) for transferring methoxyl groups from lignin monomers to cob(I)alamin. MtgBs have no homology with known microbial methyltransferases and are present only in bathyarchaeial lineages. Heterologous expression of the mtgB gene confirmed O-demethylation activity. The mtgB genes were identified in metagenomic data sets from a wide range of coastal sediments, and they were highly expressed in coastal sediments from the East China Sea. These findings suggest that Bathyarchaeia, capable of O-demethylation via their novel and specific methyltransferases, are ubiquitous in coastal sediments.

4.
Microbiol Resour Announc ; 11(11): e0076122, 2022 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-36301089

RÉSUMÉ

Here, we report the draft genome sequence of the siderophilic cyanobacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing hot spring. JSC-11 has bioremediation potential because it is capable of both extracellular absorption and intracellular mineralization of colloidal iron. This genomic information will facilitate the exploration of JSC-11 for bioremediation.

5.
Microbiol Resour Announc ; 10(25): e0049521, 2021 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-34165332

RÉSUMÉ

The siderophilic, thermophilic Leptolyngbyaceae cyanobacterium JSC-12 was isolated from a microbial mat in an iron-depositing hot spring. Here, we report the high-quality draft genome sequence of JSC-12, which may help elucidate the mechanisms of resistance to extreme iron concentrations in siderophilic cyanobacteria and lead to new remediation biotechnologies.

6.
ISME J ; 15(8): 2366-2378, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-33649554

RÉSUMÉ

In marine ecosystems, viruses exert control on the composition and metabolism of microbial communities, influencing overall biogeochemical cycling. Deep sea sediments associated with cold seeps are known to host taxonomically diverse microbial communities, but little is known about viruses infecting these microorganisms. Here, we probed metagenomes from seven geographically diverse cold seeps across global oceans to assess viral diversity, virus-host interaction, and virus-encoded auxiliary metabolic genes (AMGs). Gene-sharing network comparisons with viruses inhabiting other ecosystems reveal that cold seep sediments harbour considerable unexplored viral diversity. Most cold seep viruses display high degrees of endemism with seep fluid flux being one of the main drivers of viral community composition. In silico predictions linked 14.2% of the viruses to microbial host populations with many belonging to poorly understood candidate bacterial and archaeal phyla. Lysis was predicted to be a predominant viral lifestyle based on lineage-specific virus/host abundance ratios. Metabolic predictions of prokaryotic host genomes and viral AMGs suggest that viruses influence microbial hydrocarbon biodegradation at cold seeps, as well as other carbon, sulfur and nitrogen cycling via virus-induced mortality and/or metabolic augmentation. Overall, these findings reveal the global diversity and biogeography of cold seep viruses and indicate how viruses may manipulate seep microbial ecology and biogeochemistry.


Sujet(s)
Sédiments géologiques , Microbiote , Méthane , Océans et mers , Phylogenèse , ARN ribosomique 16S
7.
Viruses ; 13(1)2021 Jan 13.
Article de Anglais | MEDLINE | ID: mdl-33451082

RÉSUMÉ

Viruses are highly abundant, diverse, and active components of marine environments. Flow cytometry has helped to increase the understanding of their impact on shaping microbial communities and biogeochemical cycles in the pelagic zone. However, to date, flow cytometric quantification of sediment viruses is still hindered by interference from the sediment matrix. Here, we developed a protocol for the enumeration of marine sediment viruses by flow cytometry based on separation of viruses from sediment particles using a Nycodenz density gradient. Results indicated that there was sufficient removal of background interference to allow for flow cytometric quantification. Applying this new protocol to deep-sea and tidal-flat samples, viral abundances enumerated by flow cytometry correlated well (R2 = 0.899) with counts assessed by epifluorescence microscopy over several orders of magnitude from marine sediments of various compositions. Further optimization may be needed for sediments with low biomass or high organic content. Overall, the new protocol enables fast and accurate quantification of marine sediment viruses, and opens up the options for virus sorting, targeted viromics, and single-virus sequencing.


Sujet(s)
Cytométrie en flux/méthodes , Sédiments géologiques/virologie , Eau de mer , Virus , Microbiologie de l'eau , Fractionnement chimique , Dermoscopie , Charge virale , Virus/isolement et purification
8.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Article de Anglais | MEDLINE | ID: mdl-33446582

RÉSUMÉ

A moderately acidophilic Geobacter sp. strain, FeAm09, was isolated from forest soil. The complete genome sequence is 4,099,068 bp with an average GC content of 61.1%. No plasmids were detected. The genome contains a total of 3,843 genes and 3,608 protein-coding genes, including genes supporting iron and nitrogen biogeochemical cycling.

9.
J Hazard Mater ; 412: 125089, 2021 06 15.
Article de Anglais | MEDLINE | ID: mdl-33517059

RÉSUMÉ

Uranium minerals are commonly found in soils and sediment across the United States at an average concentration of 2-4 mg/kg. Uranium occurs in the environment primarily in two forms, the oxidized, mostly soluble uranium(VI) form, or the reduced, sparingly soluble reduced uranium(IV) form. Here we describe subsurface geochemical conditions that result in low uranium concentrations in an alluvial aquifer with naturally occurring uranium in soils and sediments in the presence of complexing ligands under oxidizing conditions. Groundwater was saturated with respect to calcite and contained calcium (78-90 mg/L) with elevated levels of carbonate alkalinity (291-416 mg/L as HCO3-). X-ray adsorption near edge structure (XANES) spectroscopy identified that sediment-associated uranium was oxidized as a uranium(VI) form (85%). Calcite was the predominant mineral by mass in the ultrafine fraction in uranium-bearing sediments (>16 mg/kg). Groundwater geochemical modeling indicated calcite and/or a calcium-uranyl-carbonate mineral such as liebigite in equilibrium with groundwater. The δ13C (0.57‰ ± 0.15‰) was indicative of abiotic carbonate deposition. Thus, solid-phase uranium(VI) associated with carbonate is likely maintaining uranium(VI) groundwater levels below the maximum contaminant level (MCL; 30 µg/L), presenting a deposition mechanism for uranium attenuation rather than solely a means of mobilization.

10.
Science ; 370(6521): 1230-1234, 2020 12 04.
Article de Anglais | MEDLINE | ID: mdl-33273103

RÉSUMÉ

Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hot sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop two orders of magnitude and endospores become more than 6000 times more abundant than vegetative cells. Methane is biologically produced and oxidized until sediments reach 80° to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrations demonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zones alternate with zones up to 192 meters thick where microbes were undetectable.


Sujet(s)
Bactéries formant des endospores/croissance et développement , Sédiments géologiques/microbiologie , Température élevée , Acétates/métabolisme , Bactéries formant des endospores/métabolisme , Sédiments géologiques/composition chimique , Méthane/métabolisme
11.
Front Microbiol ; 10: 878, 2019.
Article de Anglais | MEDLINE | ID: mdl-31110497

RÉSUMÉ

Viruses are the most abundant biological entities on Earth and perform essential ecological functions in aquatic environments by mediating biogeochemical cycling and lateral gene transfer. Cellular life as well as viruses have been found in deep subseafloor sediment. However, the study of deep sediment viruses has been hampered by the complexities involved in efficiently extracting viruses from a sediment matrix. Here, we developed a new method for the extraction of viruses from sediment based on density separation using a Nycodenz density step gradient. The density separation method resulted in up to 2 orders of magnitude greater recovery of viruses from diverse subseafloor sediments compared to conventional methods. The density separation method also showed more consistent performance between samples of different sediment lithology, whereas conventional virus extraction methods were highly inconsistent. Using this new method, we show that previously published virus counts have underestimated viral abundances by up to 2 orders of magnitude. These improvements suggest that the carbon contained within viral biomass in the subseafloor environment may potentially be revised upward to 0.8-3.7 Gt from current estimates of 0.2 Gt. The vastly improved recovery of viruses indicate that viruses represent a far larger pool of organic carbon in subseafloor environments than previously estimated.

12.
Environ Sci Technol ; 52(15): 8133-8145, 2018 08 07.
Article de Anglais | MEDLINE | ID: mdl-29996052

RÉSUMÉ

Reduced zones in the subsurface represent biogeochemically active hotspots enriched in buried organic matter and reduced metals. Within a shallow alluvial aquifer located near Rifle, CO, reduced zones control the fate and transport of uranium (U). Though an influx of dissolved oxygen (DO) would be expected to mobilize U, we report U immobilization. Groundwater U concentrations decreased following delivery of DO (21.6 mg O2/well/h). After 23 days of DO delivery, injection of oxygenated groundwater was paused and resulted in the rebound of groundwater U concentrations to preinjection levels. When DO delivery resumed (day 51), groundwater U concentrations again decreased. The injection was halted on day 82 again and resulted in a rebound of groundwater U concentrations. DO delivery rate was increased to 54 mg O2/well/h (day 95) whereby groundwater U concentrations increased. Planktonic cell abundance remained stable throughout the experiment, but virus-to-microbial cell ratio increased 1.8-3.4-fold with initial DO delivery, indicative of microbial activity in response to DO injection. Together, these results indicate that the redox-buffering capacity of reduced sediments can prevent U mobilization, but could be overcome as delivery rate or oxidant concentration increases, mobilizing U.


Sujet(s)
Nappe phréatique , Uranium , Polluants radioactifs de l'eau , Sédiments géologiques , Oxygène
13.
Front Microbiol ; 8: 1199, 2017.
Article de Anglais | MEDLINE | ID: mdl-28744257

RÉSUMÉ

Viruses are the most abundant biological entity on Earth and their interactions with microbial communities are recognized to influence microbial ecology and impact biogeochemical cycling in various ecosystems. While the factors that control the distribution of viruses in surface aquatic environments are well-characterized, the abundance and distribution of continental subsurface viruses with respect to microbial abundance and biogeochemical parameters have not yet been established. In order to begin to understand the factors governing virus distribution in subsurface environments, we assessed microbial cell and virus abundance in groundwater concurrent with groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Colorado River near Rifle, CO. Virus abundance ranged from 8.0 × 104 to 1.0 × 106 mL-1 and exceeded cell abundance in all samples (cell abundance ranged from 5.8 × 104 to 6.1 × 105 mL-1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6 with virus abundance most strongly correlated to cell abundance (Spearman's ρ = 0.73, p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon (DOC) with cells having a slightly stronger correlation (Spearman's ρ = 0.46, p < 0.05 and ρ = 0.54, p < 0.05; respectively). Groundwater uranium was also strongly correlated with DOC and virus and cell abundance (Spearman's ρ = 0.62, p < 0.05; ρ = 0.46, p < 0.05; and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and virus abundance are correlated to the geochemical conditions in the aquifer. As such local geochemical conditions likely control microbial host cell abundance which in turn controls viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation of labile organic matter from lysed cells and changes in microbial community structure, viral interactions with the microbiota should be considered in an effort to understand subsurface biogeochemical cycling and contaminant mobility.

14.
ISME J ; 8(8): 1691-703, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24671088

RÉSUMÉ

A variety of microbially mediated metabolic pathways impact biogeochemical cycling in terrestrial subsurface environments. However, the role that viruses have in influencing microbial mortality and microbial community structure is poorly understood. Here we investigated the production of viruses and change in microbial community structure within shallow alluvial aquifer sediment slurries amended with (13)C-labeled acetate and nitrate. Biostimulation resulted in production of viruses concurrent with acetate oxidation, (13)CO2 production and nitrate reduction. Interestingly, change in viral abundance was positively correlated to acetate consumption (r(2)=0.6252, P<0.05) and (13)CO2 production (r(2)=0.6572, P<0.05); whereas change in cell abundance was not correlated to acetate consumption or (13)CO2 production. Viral-mediated cell lysis has implications for microbial community structure. Betaproteobacteria predominated microbial community composition (62% of paired-end reads) upon inoculation but decreased in relative abundance and was negatively correlated to changes in viral abundance (r(2)=0.5036, P<0.05). As members of the Betaproteobacteria decreased, Gammaproteobacteria, specifically Pseudomonas spp., increased in relative abundance (82% of paired-end reads) and was positively correlated with the change in viral abundance (r(2)=0.5368, P<0.05). A nitrate-reducing bacterium, Pseudomonas sp. strain Alda10, was isolated from these sediments and produced viral-like particles with a filamentous morphology that did not result in cell lysis. Together, these results indicate that viruses are linked to carbon biogeochemistry and community structure in terrestrial subsurface sediments. The subsequent cell lysis has the potential to alter available carbon pools in subsurface environments, additionally controlling microbial community structure from the bottom-up.


Sujet(s)
Bactéries/classification , Carbone/métabolisme , Sédiments géologiques/microbiologie , Nitrates/métabolisme , Phénomènes physiologiques viraux , Acétates/métabolisme , Bactéries/isolement et purification , Bactéries/métabolisme , Betaproteobacteria/isolement et purification , Dioxyde de carbone/métabolisme , Gammaproteobacteria/isolement et purification , Sédiments géologiques/virologie , Nappe phréatique , Oxydoréduction
15.
Sarcoma ; 2012: 171342, 2012.
Article de Anglais | MEDLINE | ID: mdl-22966215

RÉSUMÉ

Background. Extremity sarcoma represents a heterogeneous group of rare cancers that carries a relatively high morbidity with regards to physical function. Quality of Life (QoL) as an outcome is an important consideration in this cohort. We aimed to identify the correlates of QoL in extremity sarcoma cohorts. Methods. A systematic review of the literature on extremity sarcoma in adults from five databases over the last ten years was undertaken. Results. Twelve articles were chosen and assessed for quality. Physical and social function of extremity sarcoma survivors is below that of the general population. Overall QoL scores of these patients are comparable to those of the general population. Studies that used more recently treated cohorts found that patients who had limb sparing surgery displayed superior functional outcomes over those that underwent amputations. Pain and perceiving that the cancer negatively influenced opportunities was associated with poor outcomes. Conclusion. The available literature regarding QoL in extremity sarcoma patients is heterogeneous in terms of aims and assessment tools. Results need to be interpreted in light of the improved management of extremity sarcoma in more recent patient cohorts.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...