Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-38138361

RÉSUMÉ

Micro-Electro-Mechanical System (MEMS) inertial sensors, characterized by their small size, low cost, and low power consumption, are commonly used in foot-mounted wearable pedestrian autonomous positioning systems. However, they also have drawbacks such as heading drift and poor repeatability. To address these issues, this paper proposes an improved pedestrian autonomous 3D positioning algorithm based on dual-foot motion characteristic constraints. Two sets of small-sized Inertial Measurement Units (IMU) are worn on the left and right feet of pedestrians to form an autonomous positioning system, each integrated with low-cost, low-power micro-inertial sensor chips. On the one hand, an improved adaptive zero-velocity detection algorithm is employed to enhance discrimination accuracy under different step-speed conditions. On the other hand, considering the dual-foot gait characteristics and the height difference feature during stair ascent and descent, horizontal position update algorithms based on dual-foot motion trajectory constraints and height update algorithms based on dual-foot height differences are, respectively, designed. These algorithms aim to re-correct the pedestrian position information updated at zero velocity in both horizontal and vertical directions. The experimental results indicate that in a laboratory environment, the 3D positioning error is reduced by 93.9% compared to unconstrained conditions. Simultaneously, the proposed approach enhances the accuracy, continuity, and repeatability of the foot-mounted IMU positioning system without the need for additional power consumption.

2.
Micromachines (Basel) ; 13(7)2022 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-35888947

RÉSUMÉ

Due to the massive multipath effects and non-line-of-sight (NLOS) signal receptions, the accuracy and reliability of GNSS positioning solution can be severely degraded in a highly urbanized area, which has a negative impact on the performance of GNSS/INS integrated navigation. Therefore, this paper proposes a multipath/NLOS detection method based on the K-means clustering algorithm for vehicle GNSS/INS integrated positioning. It comprehensively considers different feature parameters derived from GNSS raw observations, such as the satellite-elevation angle, carrier-to-noise ratio, pseudorange residual, and pseudorange rate consistency to effectively classify GNSS signals. In view of the influence of different GNSS signals on positioning results, the K-means clustering algorithm is exploited to divide the observation data into two main categories: direct signals and indirect signals (including multipath and NLOS signals). Then, the multipath/NLOS signal is separated from the observation data. Finally, this paper uses the measured vehicle GNSS/INS observation data, including offline dataset and online dataset, to verify the accuracy of signal classification based on double-differenced pseudorange positioning. A series of experiments conducted in typical urban scenarios demonstrate that the proposed method could ameliorate the positioning accuracy significantly compared with the conventional GNSS/INS integrated navigation. After excluding GNSS outliers, the positioning accuracy of the offline dataset is improved by 16% and 85% in the horizontal and vertical directions, respectively, and the positioning accuracy of the online dataset is improved by 21% and 41% in the two directions. This method does not rely on external geographic information data and other sensors, which has better practicability and environmental adaptability.

3.
Rev Sci Instrum ; 92(2): 025112, 2021 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-33648075

RÉSUMÉ

To survey deep-buried and non-metallic pipelines without excavation, a pipeline survey instrument composed of a data collection and data processing part is developed. The data collection part is composed of a walking machine, a nine-axis micro-electro-mechanical system inertial measurement unit (MEMS-IMU) installed on the walking machine, odometers based on Hall magnetic switches, and a control/data storage circuit, while data processing is executed on the personal computer, where the attitude and trajectory are acquired with the complementary filter and dead reckoning on the collected data. Key technologies include the following: (1) the gyro-bias is estimated with the parking mode when there is no angular motion excitation; (2) a magnetometer is introduced to assist MEMS-IMU tracking azimuth changes; (3) calibration based on ellipsoid fitting is designed for magnetometers and accelerometers without any references; (4) stretching and rotation on calculated trajectory are executed with position information of both pipeline ends. Test results on a pipeline of 104 m constructed on the ground show that the maximum error on the lateral direction is 0.13 m and the height is 0.06 m, while the mean errors are -0.04 m and -0.001 m, respectively.

4.
Sensors (Basel) ; 20(8)2020 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-32326441

RÉSUMÉ

High-precision navigation and positioning technology for indoor areas has become one of the research hotspots in the current navigation field. However, due to the complexity of the indoor environment, this technology direction is also one of the research difficulties. At present, our common indoor positioning methods are WIFI, Bluetooth, LED, ultrasound and pseudo satellite. However, due to the problem of inaccurate direct or indirect ranging, the positioning accuracy is usually affected, which makes the final application difficult to achieve. In order to avoid the ranging limitations of the existing methods, a new dual-frequency entanglement constraint (DFEC) ranging method based on homologous base station is proposed in this paper. The relationship between the homologous characteristics of dual-frequency signals and the phase relationship within the cycle is used to estimate the current carrier phase adjustment the true value of the cycle count is used to get rid of the constraints of the ranging conditions and improve the ranging accuracy. In order to verify the feasibility of this method, the wired environment test and the typical characteristic points of wireless environment are tested and analyzed respectively. The analysis results show that in the wired environment, the transmitting base station and the receiving terminal will introduce a ranging error of one wavelength; in the wireless environment, due to the influence of spatial noise and multipath, the error of the estimation of the whole cycles of the ranging value increases significantly. And this phenomenon is most obvious especially in the region where the signal is shaded, but the error estimate that satisfies ± 1 wavelength still accounts for 90%. Based on this, we conduct multiple observation data collection at five typical feature points, and used existing MATLAB positioning algorithms to conduct positioning error tests. The analysis found that under this error condition, the positioning accuracy was about 0.6 m, and 93% of the points met the 1-m positioning accuracy.

5.
Sensors (Basel) ; 20(3)2020 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-32012752

RÉSUMÉ

Real-time dynamic displacement and spectral response on the midspan of Jiangyin Bridge were calculated using Global Navigation Satellite System (GNSS) and a speedometer for the purpose of understanding the dynamic behavior and the temporal evolution of the bridge structure. Considering that the GNSS measurement noise is large and the velocity/acceleration sensors cannot measure the low-frequency displacement, the Variational Mode Decomposition (VMD) algorithm was used to extract the low-frequency displacement of GNSS. Then, the low-frequency displacement extracted from the GNSS time series and the high-frequency vibration calculated by speedometer were combined in this paper in order to obtain the high precision three-dimensional dynamic displacement of the bridge in real time. Simulation experiment and measured data show that the VMD algorithm could effectively resist the modal aliasing caused by noise and discontinuous signals compared with the commonly used Empirical Mode Decomposition (EMD) algorithm, which is guaranteed to get high-precision fusion data. Finally, the fused displacement results can identify high-frequency vibrations and low-frequency displacements of a mm level, which can be used to calculate the spectral characteristics of the bridge and provide reference to evaluate the dynamic and static loads, and the health status of the bridge in the full frequency domain and the full time domain.

6.
Sensors (Basel) ; 19(13)2019 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-31277391

RÉSUMÉ

The distribution of total electron content (TEC) in the ionosphere is irregular and complex, and it is hard to model accurately. The polynomial (POLY) model is used extensively for regional ionosphere modeling in two-dimensional space. However, in the active period of the ionosphere, the POLY model is difficult to reflect the distribution and variation of TEC. Aiming at the limitation of the regional POLY model, this paper proposes a new ionosphere modeling method with combining the support vector machine (SVM) regression model and the POLY model. Firstly, the POLY model is established using observations of regional continuously operating reference stations (CORS). Then the SVM regression model is trained to compensate the model error of POLY, and the TEC SVM-P model is obtained by the combination of the POLY and the SVM. The fitting accuracies of the models are verified with the root mean square errors (RMSEs) and static single-frequency precise point positioning (PPP) experiments. The results show that the RMSE of the SVM-P is 0.980 TECU (TEC unit), which produces an improvement of 17.3% compared with the POLY model (1.185 TECU). Using SVM-P models, the positioning accuracies of single-frequency PPP are improved over 40% compared with those using POLY models. The SVM-P is also compared with the back-propagation neural network combined with POLY (BPNN-P), and its performance is also better than BPNN-P (1.070 TECU).

7.
Sensors (Basel) ; 15(11): 27525-42, 2015 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-26528977

RÉSUMÉ

The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

8.
Sensors (Basel) ; 15(7): 17808-26, 2015 Jul 22.
Article de Anglais | MEDLINE | ID: mdl-26205276

RÉSUMÉ

Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...