Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 117
Filtrer
1.
Virus Evol ; 10(1): veae068, 2024.
Article de Anglais | MEDLINE | ID: mdl-39347444

RÉSUMÉ

Dengue fever remains as a public health challenge in Colombia, standing as the most prevalent infectious disease in the country. The cyclic nature of dengue epidemics, occurring approximately every 3 years, is intricately linked to meteorological events like El Niño Southern Oscillation (ENSO). Therefore, the Colombian system faces challenges in genomic surveillance. This study aimed to evaluate local dengue virus (DENV) transmission and genetic diversity in four Colombian departments with heterogeneous incidence patterns (department is first-level territorial units in Colombia). For this study, we processed 266 serum samples to identify DENV. Subsequently, we obtained 118 genome sequences by sequencing DENV genomes from serum samples of 134 patients infected with DENV-1 and DENV-2 serotypes. The predominant serotype was DENV-2 (108/143), with the Asian-American (AA) genotype (91/118) being the most prevalent one. Phylogenetic analysis revealed concurrent circulation of two lineages of both DENV-2 AA and DENV-1 V, suggesting ongoing genetic exchange with sequences from Venezuela and Cuba. The continuous migration of Venezuelan citizens into Colombia can contribute to this exchange, emphasizing the need for strengthened prevention measures in border areas. Notably, the time to most recent common ancestor analysis identified cryptic transmission of DENV-2 AA since approximately 2015, leading to the recent epidemic. This challenges the notion that major outbreaks are solely triggered by recent virus introductions, emphasizing the importance of active genomic surveillance. The study also highlighted the contrasting selection pressures on DENV-1 V and DENV-2 AA, with the latter experiencing positive selection, possibly influencing its transmissibility. The presence of a cosmopolitan genotype in Colombia, previously reported in Brazil and Peru, raises concerns about transmission routes, emphasizing the necessity for thorough DENV evolution studies. Despite limitations, the study underscores genomic epidemiology's crucial role in early detection and comprehension of DENV genotypes, recommending the use of advanced sequencing techniques as an early warning system to help prevent and control dengue outbreaks in Colombia and worldwide.

2.
IJID Reg ; 12: 100410, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39228675

RÉSUMÉ

This study seeks to address the critical knowledge gap surrounding the acute phase of Chagas disease in Colombia, with a specific focus on cases reported in 2019. The acute phase of Chagas disease is a pivotal period for intervention, yet it remains poorly understood, particularly in regions where oral transmission is presumed to be a significant factor. By analyzing these recent cases, our research aims to provide a deeper understanding of the dynamics of Chagas disease during its acute phase in Colombia in 2019. This understanding is essential not only for improving disease management and treatment strategies but also for enhancing public health responses to this neglected tropical disease. In particular, our study highlights the importance of identifying and addressing the unique challenges posed by oral transmission routes, which have been increasingly recognized within Colombia's Chagas disease landscape.

3.
J Infect Public Health ; 17(9): 102510, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39088990

RÉSUMÉ

BACKGROUND: Nonspecific acute tropical febrile illnesses (NEATFI) are common in the Latin American tropics. Dengue, Chikungunya, Zika, Mayaro, and Usutu, among others, can coexist in the American tropics. This study aimed to surveil the arboviruses that cause| acute febrile syndrome in patients in the Meta department, Colombia. METHODS: Between June 2021 and February 2023, an epidemiological surveillance study was conducted in the Llanos of the Meta department in Eastern Colombia. RESULTS: One hundred patients in the acute phase with typical prodromal symptoms of NEATFI infection who attended the emergency department of the Villavicencio Departmental Hospital were included. ELISA tests were performed for Dengue, Usutu, Chikungunya, and Mayaro. RT-qPCR was performed to detect the arboviruses Usutu, Dengue, Zika, Mayaro, and Oropouche. The seroprevalence for the Chikungunya, Mayaro, and Usutu viruses was 41 % (28/68), 40 % (27/67), and 62 % (47/75), respectively. Seroconversion for Chikungunya was observed in one patient; two seroconverted to Mayaro and one to Usutu. The NS5 gene fragment of the Usutu virus was detected in nine febrile patients. RT-qPCR of the remaining arboviruses was negative. The clinical symptoms of the nine Usutu-positive patients were very similar to those of Dengue, Chikungunya, Zika, and Mayaro infections. CONCLUSIONS: The pervasive detection of unexpected viruses such as Usutu and Mayaro demonstrated the importance of searching for other viruses different from Dengue. Because Usutu infection and Mayaro fever have clinical features like Dengue, a new algorithm should be proposed to improve the accuracy of acute tropical fevers.


Sujet(s)
Infections à arbovirus , Arbovirus , Surveillance épidémiologique , Humains , Colombie/épidémiologie , Mâle , Femelle , Arbovirus/isolement et purification , Arbovirus/génétique , Infections à arbovirus/épidémiologie , Infections à arbovirus/virologie , Infections à arbovirus/diagnostic , Adulte , Adolescent , Jeune adulte , Adulte d'âge moyen , Études séroépidémiologiques , Fièvre/épidémiologie , Fièvre/virologie , Enfant , Anticorps antiviraux/sang , Enfant d'âge préscolaire , Fièvre chikungunya/épidémiologie , Fièvre chikungunya/diagnostic , Sujet âgé , Test ELISA
4.
Emerg Infect Dis ; 30(7): 1398-1401, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38916574

RÉSUMÉ

We describe a recent case of lymphatic filariasis in Colombia caused by Wuchereria bancrofti nematodes. Our study combines clinical-epidemiologic findings with phylogenetic data. Resurgence of lymphatic filariasis may be linked to increasing urbanization trends and migration from previously endemic regions. Fieldwork can be a beneficial tool for screening and containing transmission.


Sujet(s)
Filariose lymphatique , Wuchereria bancrofti , Filariose lymphatique/épidémiologie , Colombie/épidémiologie , Wuchereria bancrofti/génétique , Humains , Animaux , Phylogenèse , Mâle , Adulte , Femelle , Adulte d'âge moyen
5.
Biomolecules ; 14(4)2024 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-38672424

RÉSUMÉ

Originally developed as a chemotherapeutic agent, miltefosine (hexadecylphosphocholine) is an inhibitor of phosphatidylcholine synthesis with proven antiparasitic effects. It is the only oral drug approved for the treatment of Leishmaniasis and American Trypanosomiasis (Chagas disease). Although its precise mechanisms are not yet fully understood, miltefosine exhibits broad-spectrum anti-parasitic effects primarily by disrupting the intracellular Ca2+ homeostasis of the parasites while sparing the human hosts. In addition to its inhibitory effects on phosphatidylcholine synthesis and cytochrome c oxidase, miltefosine has been found to affect the unique giant mitochondria and the acidocalcisomes of parasites. Both of these crucial organelles are involved in Ca2+ regulation. Furthermore, miltefosine has the ability to activate a specific parasite Ca2+ channel that responds to sphingosine, which is different to its L-type VGCC human ortholog. Here, we aimed to provide an overview of recent advancements of the anti-parasitic mechanisms of miltefosine. We also explored its multiple molecular targets and investigated how its pleiotropic effects translate into a rational therapeutic approach for patients afflicted by Leishmaniasis and American Trypanosomiasis. Notably, miltefosine's therapeutic effect extends beyond its impact on the parasite to also positively affect the host's immune system. These findings enhance our understanding on its multi-targeted mechanism of action. Overall, this review sheds light on the intricate molecular actions of miltefosine, highlighting its potential as a promising therapeutic option against these debilitating parasitic diseases.


Sujet(s)
Calcium , Maladie de Chagas , Homéostasie , Leishmaniose , Phosphoryl-choline , Phosphoryl-choline/analogues et dérivés , Humains , Phosphoryl-choline/pharmacologie , Phosphoryl-choline/usage thérapeutique , Maladie de Chagas/traitement médicamenteux , Maladie de Chagas/parasitologie , Maladie de Chagas/métabolisme , Calcium/métabolisme , Leishmaniose/traitement médicamenteux , Leishmaniose/métabolisme , Leishmaniose/parasitologie , Homéostasie/effets des médicaments et des substances chimiques , Animaux , Antiprotozoaires/pharmacologie , Antiprotozoaires/usage thérapeutique , Mitochondries/métabolisme , Mitochondries/effets des médicaments et des substances chimiques , Leishmania/effets des médicaments et des substances chimiques , Leishmania/métabolisme , Trypanosoma cruzi/effets des médicaments et des substances chimiques , Trypanosoma cruzi/métabolisme
6.
Heliyon ; 10(5): e27452, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38463823

RÉSUMÉ

The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.

7.
Parasit Vectors ; 16(1): 458, 2023 Dec 18.
Article de Anglais | MEDLINE | ID: mdl-38111024

RÉSUMÉ

BACKGROUND: Leishmaniasis is a parasitic disease caused by obligate intracellular protozoa of the genus Leishmania. This infection is characterized by a wide range of clinical manifestations, with symptoms greatly dependent on the causal parasitic species. Here we present the design and application of a new 70-kDa heat shock protein gene (hsp70)-based marker of 771 bp (HSP70-Long). We evaluated its sensitivity, specificity and diagnostic performance employing an amplicon-based MinION™ DNA sequencing assay to identify different Leishmania species in clinical samples from humans and reservoirs with cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We also conducted a comparative analysis between our novel marker and a previously published HSP70 marker known as HSP70-Short, which spans 330 bp. METHODS: A dataset of 27 samples from Colombia, Venezuela and the USA was assembled, of which 26 samples were collected from humans, dogs and cats affected by CL and one sample was collected from a dog with VL in the USA (but originally from Greece). DNA was extracted from each sample and underwent conventional PCR amplification utilizing two distinct HSP70 markers: HSP70-Short and HSP70-Long. The subsequent products were then sequenced using the MinION™ sequencing platform. RESULTS: The results highlight the distinct characteristics of the newly devised HSP70-Long primer, showcasing the notable specificity of this primer, although its sensitivity is lower than that of the HSP70-Short marker. Notably, both markers demonstrated strong discriminatory capabilities, not only in distinguishing between different species within the Leishmania genus but also in identifying instances of coinfection. CONCLUSIONS: This study underscores the outstanding specificity and effectiveness of HSP70-based MinION™ sequencing, in successfully discriminating between diverse Leishmania species and identifying coinfection events within samples sourced from leishmaniasis cases.


Sujet(s)
Maladies des chats , Co-infection , Maladies des chiens , Leishmania , Leishmaniose cutanée , Leishmaniose viscérale , Séquençage par nanopores , Humains , Animaux , Chiens , Chats , Maladies des chiens/diagnostic , Maladies des chiens/parasitologie , Leishmania/génétique , Leishmaniose cutanée/diagnostic , Leishmaniose cutanée/parasitologie , Leishmaniose viscérale/médecine vétérinaire , Protéines du choc thermique HSP70/génétique
8.
BMC Infect Dis ; 23(1): 877, 2023 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-38097988

RÉSUMÉ

BACKGROUND: Persistent headache is a frequent symptom after coronavirus disease 2019 (COVID-19) and there is currently limited knowledge about its clinical spectrum and predisposing factors. A subset of patients may be experiencing new daily persistent headache (NDPH) after COVID-19, which is among the most treatment-refractory primary headache syndromes. METHODS: We conducted a cross-sectional study in Latin America to characterize individuals with persistent headache after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to identify factors associated with NDPH. Participants over 18 years old who tested positive for SARS-CoV-2 infection and reported persistent headache among their symptoms completed an online survey that included demographics, past medical history, persistent headache clinical characteristics, and COVID-19 vaccination status. Based on participants' responses, NDPH diagnostic criteria were used to group participants into NDPH and non-NDPH groups. Participant data was summarized by descriptive statistics. Student's t and Mann-Whitney U tests were used according to the distribution of quantitative variables. For categorical variables, Pearson's chi-square and Fisher's exact tests were used according to the size of expected frequencies. Binomial logistic regression using the backward stepwise selection method was performed to identify factors associated with NDPH. RESULTS: Four hundred and twenty-one participants from 11 Latin American countries met the inclusion criteria. One in four participants met the NDPH diagnostic criteria. The mean age was 40 years, with most participants being female (82%). Over 90% of the participants reported having had mild/moderate COVID-19. Most participants had a history of headache before developing COVID-19 (58%), mainly migraine type (32%). The most predominant clinical characteristics in the NDPH group were occipital location, severe/unbearable intensity, burning character, and radiating pain (p < 0.05). A higher proportion of anxiety symptoms, sleep problems, myalgia, mental fog, paresthesia, nausea, sweating of the face or forehead, and ageusia or hypogeusia as concomitant symptoms were reported in participants with NDPH (p < 0.05). Palpebral edema as a concomitant symptom during the acute phase of COVID-19, occipital location, and burning character of the headache were risk factors associated with NDPH. CONCLUSION: This is the first study in Latin America that explored the clinical spectrum of NDPH after SARS-CoV-2 infection and its associated factors. Clinical evaluation of COVID-19 patients presenting with persistent headache should take into consideration NDPH.


Sujet(s)
COVID-19 , Céphalées , Humains , Femelle , Adulte , Adolescent , Mâle , COVID-19/complications , COVID-19/épidémiologie , Études transversales , Amérique latine/épidémiologie , SARS-CoV-2 , Vaccins contre la COVID-19 , Céphalées/diagnostic , Céphalées/étiologie , Céphalée/épidémiologie , Céphalée/étiologie
9.
Emerg Infect Dis ; 29(12): 2513-2517, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37987584

RÉSUMÉ

We report a patient from Panama who had lobomycosis caused by Paracoccidioides (Lacazia) loboi. We used combined clinical-epidemiologic and phylogenetic data, including a new gene sequence dataset on this fungus in Panama, for analysis. Findings contribute useful insights to limited knowledge of this fungal infection in the Mesoamerican Biologic Corridor.


Sujet(s)
Lacazia , Lobomycose , Paracoccidioides , Humains , Lobomycose/diagnostic , Lobomycose/microbiologie , Paracoccidioides/génétique , Phylogenèse , Panama/épidémiologie
10.
PeerJ ; 11: e15169, 2023.
Article de Anglais | MEDLINE | ID: mdl-37431467

RÉSUMÉ

Bats are known reservoirs of seemingly-innocuous pathogenic microorganisms (including viruses, bacteria, fungi, and protozoa), which are associated with triggering disease in other zoonotic groups. The taxonomic diversity of the bats' microbiome is likely associated with species-specific phenotypic, metabolic, and immunogenic capacities. To date, few studies have described the diversity of bat blood microbial communities. Then, this study used amplicon-based next generation sequencing of the V4 hypervariable region of the 16S-rRNA gene in blood samples from omnivorous (n = 16) and frugivorous (n = 9) bats from the department of Casanare in eastern Colombia. We found the blood microbiota in bats to be composed of, among others, Bartonella and Mycoplasma bacterial genera which are associated with various disease phenotypes in other mammals. Furthermore, our results suggest that the bats' dietary habits might determine the composition and the persistence of some pathogens over others in their bloodstream. This study is among the first to describe the blood microbiota in bats, to reflect on co-infection rates of multiple pathogens in the same individual, and to consider the influence of diet as a factor affecting the animal's endogenous microbial community.


Sujet(s)
Bartonella , Chiroptera , Microbiote , Animaux , Bartonella/génétique , Colombie/épidémiologie , Microbiote/génétique
11.
Commun Med (Lond) ; 3(1): 97, 2023 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-37443390

RÉSUMÉ

BACKGROUND: The emergence of highly transmissible SARS-CoV-2 variants has led to surges in cases and the need for global genomic surveillance. While some variants rapidly spread worldwide, other variants only persist nationally. There is a need for more fine-scale analysis to understand transmission dynamics at a country scale. For instance, the Mu variant of interest, also known as lineage B.1.621, was first detected in Colombia and was responsible for a large local wave but only a few sporadic cases elsewhere. METHODS: To better understand the epidemiology of SARS-Cov-2 variants in Colombia, we used 14,049 complete SARS-CoV-2 genomes from the 32 states of Colombia. We performed Bayesian phylodynamic analyses to estimate the time of variants' introduction, their respective effective reproductive number, and effective population size, and the impact of disease control measures. RESULTS: Here, we detect a total of 188 SARS-CoV-2 Pango lineages circulating in Colombia since the pandemic's start. We show that the effective reproduction number oscillated drastically throughout the first two years of the pandemic, with Mu showing the highest transmissibility (Re and growth rate estimation). CONCLUSIONS: Our results reinforce that genomic surveillance programs are essential for countries to make evidence-driven interventions toward the emergence and circulation of novel SARS-CoV-2 variants.


Colombia reported its first COVID-19 case on 6th March 2020. By April 2022, the country had reported over 6 million infections and over 135,000 deaths. Here, we aim to understand how SARS-CoV-2, the virus that causes COVID-19, spread through Colombia over this time and how the predominant version of the virus (variant) changed over time. We found that there were multiple introductions of different variants from other countries into Colombia during the first two years of the pandemic. The Gamma variant was dominant earlier in 2021 but was replaced by the Delta variant. The Mu variant had the highest potential to be transmitted. Our findings provide valuable insights into the pandemic in Colombia and highlight the importance of continued surveillance of the virus to guide the public health response.

13.
Microbiol Spectr ; 11(3): e0019923, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37140369

RÉSUMÉ

Alterations caused by Trypanosoma cruzi in the composition of gut microbiome may play a vital role in the host-parasite interactions that shapes physiology and immune responses against infection. Thus, a better understanding of this parasite-host-microbiome interaction may yield relevant information in the comprehension of the pathophysiology of the disease and the development of new prophylactic and therapeutic alternatives. Therefore, we implemented a murine model with two mice strains (BALB/c and C57BL/6) to evaluate the impact of Trypanosoma cruzi (Tulahuen strain) infection on the gut microbiome utilizing cytokine profiling and shotgun metagenomics. Higher parasite burdens were observed in cardiac and intestinal tissues, including changes in anti-inflammatory (interleukin-4 [IL-4] and IL-10) and proinflammatory (gamma interferon, tumor necrosis factor alpha, and IL-6) cytokines. Bacterial species such as Bacteroides thetaiotaomicron, Faecalibaculum rodentium, and Lactobacillus johnsonii showed a decrease in relative abundance, while Akkermansia muciniphila and Staphylococcus xylosus increased. Likewise, as infection progressed, there was a decrease in gene abundances related to metabolic processes such as lipid synthesis (including short-chain fatty acids) and amino acid synthesis (including branched-chain amino acids). High-quality metagenomic assembled genomes of L. johnsonii and A. muciniphila among other species were reconstructed, confirming, functional changes associated with metabolic pathways that are directly affected by the loss of abundance of specific bacterial taxa. IMPORTANCE Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, presenting acute and chronic phases where cardiomyopathy, megaesophagus, and/or megacolon stand out. During the course of its life cycle, the parasite has an important gastrointestinal tract transit that leads to severe forms of CD. The intestinal microbiome plays an essential role in the immunological, physiological, and metabolic homeostasis of the host. Therefore, parasite-host-intestinal microbiome interactions may provide information on certain biological and pathophysiological aspects related to CD. The present study proposes a comprehensive evaluation of the potential effects of this interaction based on metagenomic and immunological data from two mice models with different genetic, immunological, and microbiome backgrounds. Our findings suggest that there are alterations in the immune and microbiome profiles that affect several metabolic pathways that can potentially promote the infection's establishment, progression, and persistence. In addition, this information may prove essential in the research of new prophylactic and therapeutic alternatives for CD.


Sujet(s)
Maladie de Chagas , Microbiote , Trypanosoma cruzi , Souris , Animaux , Modèles animaux de maladie humaine , Souris de lignée C57BL , Maladie de Chagas/parasitologie
15.
Acta Trop ; 242: 106901, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36940857

RÉSUMÉ

Transmission of cutaneous leishmaniasis in Venezuela reveals diverse and changing epidemiological landscapes, as well as a spectrum of clinical phenotypes presumed to be linked to a variety of Leishmania species. Central-western Venezuela constitutes one of the highest endemic epicenters in the country, and updated molecular epidemiological information is still lacking. Therefore, in this study we aimed to characterize the landscape of circulating Leishmania species across central-western Venezuela through the last two decades, performed comparisons of haplotype and nucleotide diversity, and built a geospatial map of parasite species distribution. A total of 120 clinical samples were collected from patients across the cutaneous disease spectrum, retrieving parasitic DNA, and further characterizing by PCR and sequencing of the HSP70 gene fragment. This data was later collated with further genetic, geospatial and epidemiological analyses. A peculiar pattern of species occurrence including Leishmania (Leishmania) amazonensis (77.63% N=59), Leishmania (Leishmania) infantum (14.47% N=11), Leishmania (Viannia) panamensis (5.26% N=4) and Leishmania (Viannia) braziliensis (2.63% N=2) was revealed, also highlighting a very low genetic diversity amongst all analyzed sequences. Geographical distribution showed that most cases are widely distributed across the greater urban-sub urban area of the Irribaren municipality. L.(L.) amazonensis appears to be widely dispersed throughout Lara state. Statistical analyses failed to reveal significance for any comparisons, leading to conclude a lack of association between the infective Leishmania species and clinical phenotypes. To the best of our knowledge, this is an unprecedented study which addresses comprehensively the geographical distribution of Leishmania species in central-western Venezuela throughout the last two decades, and the first to incriminate L. (L.) infantum as an etiologic agent of cutaneous leishmaniasis in this region. Our findings support that Leishmania endemism in central-western Venezuela is caused mainly by L.(L.) amazonensis. Future studies are needed to unveil additional details on the ecological intricacies and transmission aspects of leishmaniasis (i.e. sampling phlebotomines and mammals) and to adopt adequate public health prevention and control strategies and mitigate disease impact in this endemic region.


Sujet(s)
Leishmania brasiliensis , Leishmania guyanensis , Leishmania infantum , Leishmaniose cutanée , Animaux , Leishmania infantum/génétique , Venezuela/épidémiologie , Leishmaniose cutanée/épidémiologie , Leishmania brasiliensis/génétique , Leishmania guyanensis/génétique , Mammifères
16.
Travel Med Infect Dis ; 52: 102551, 2023.
Article de Anglais | MEDLINE | ID: mdl-36746267

RÉSUMÉ

The recent increase in monkeypox (MPX) cases has attracted attention of public health authorities due to its quick spread and transmission across non-endemic regions. This outbreak, unlike previous ones, displays different epidemiological features and transmission dynamics, which appear to be largely influenced by the newly divergent MPX lineages (B.1). Yet, the genomic characteristics driving the high dispersal and diversification of these lineages remain largely unknown. Herein, we sought to explore and characterize the genomic features and phylogenetic diversity of the B.1 lineages through a comparative genomic analysis inclusive of 1900 high quality complete MPXV genomes. Our analyses indicate that the current MPXV-2022 outbreak encompasses thirteen derived lineages with ten unique non-synonymous mutations in several genes linked to immune evasion, virulence factors and host recognition. Such mutations may translate in the rapid evolution and diversification of current MPXV lineages. Moreover, our analyses uncovered signals of genomic modifications suggestive of immune-modulatory enzymatic activity, such as APOBEC3 editing, which, as previously suggested could have favored evolutionary trends leading to the rapid spread of MPXV into non-endemic countries. Genomic surveillance continues to play a major role in unveiling the genomic signatures signaling potential adaptation of this emerging MPXV lineage and how it will continue to impact public health in the near future.


Sujet(s)
Virus de la variole simienne , Orthopoxvirose simienne , Humains , Virus de la variole simienne/génétique , Phylogenèse , Orthopoxvirose simienne/épidémiologie , Mutation , Génomique
17.
Animals (Basel) ; 12(24)2022 Dec 08.
Article de Anglais | MEDLINE | ID: mdl-36552379

RÉSUMÉ

Infections due to Ehrlichia, Anaplasma, Dirofilaria, Mycoplasma, Babesia and Hepatozoon continue to be highly prevalent in dogs, especially in tropical and subtropical areas, where vectors of many of them are present. However, many clinical aspects of dogs have not been characterized in detail, including assessing the haematological alterations associated with them, particularly in Colombia and Latin America. A group of 100 dogs with Ehrlichia, Anaplasma, Dirofilaria, Mycoplasma, Babesia and Hepatozoon infections/exposure were assessed by blood smear serology (SNAP4DX) and PCR in Pereira, Colombia. We performed blood counts to evaluate anaemia, leukopenia/leukocytosis, neutropenia, neutrophilia, lymphopenia/lymphocytosis, monocytosis, eosinophilia, and thrombocytopenia, among other alterations. Bivariate analyses were performed on Stata®14, with significant p < 0.05. From the total, 85% presented ≥1 infection (past or present), 66% with coinfections (≥2 pathogens) (Ehrlichia 75%), and 89% presented clinical alterations. A total of 100% showed anaemia, 70% thrombocytopenia, 61% monocytosis, and 47% neutropenia, among other alterations. Additionally, 11% presented pancytopenia and 59% bicytopenia. The median platelet count was lower in infected dogs (126,000 cells/µL) versus non-infected (221,000 cells/µL) (p = 0.003). Thrombocytopenia was higher among infected dogs (75%) versus non-infected (40%) (p = 0.006), with a 91% positive predictive value for infection. Median neutrophil count was lower in infected dogs (6591 cells/µL) versus non-infected (8804 cells/µL) (p = 0.013). Lymphocytosis occurred only among those infected (27%) (p = 0.022). Leukopenia was only observed among infected dogs (13%). Pancytopenia was only observed among infected dogs. Ehrlichiosis and other hematic infections have led to a significant burden of haematological alterations on infected dogs, including pancytopenia in a tenth of them, most with thrombocytopenia and all anemic.

18.
Parasite Epidemiol Control ; 19: e00273, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36118050

RÉSUMÉ

Chagas Disease (CD), a chronic infection caused by the Trypanosoma cruzi parasite, is a Neglected Tropical Disease endemic to Latin America. With a re-emergence in Venezuela during the past two decades, the spread of CD has proved susceptible to, and inhibitable by a digital, real-time surveillance system effectuated by Citizen Scientists in communities throughout the country. The #TraeTuChipo (#BringYourKissingBug) campaign implemented in January 2020, has served as such a strategy counting on community engagement to define the current ecological distribution of CD vectors despite the absence of a functional national surveillance program. This pilot campaign collected data through online surveys, social media platforms, and/or telephone text messages. A total of 79 triatomine bugs were reported from eighteen Venezuelan states; 67 bugs were identified as Panstrongylus geniculatus, 1 as Rhodnius pictipes, 1 as Triatoma dimidiata, and 10 as Triatoma maculata. We analyzed 8 triatomine feces samples spotted from 4 Panstrongylus geniculatus which were confirmed positive by qPCR for T. cruzi . Further molecular characterization of discrete typing units (DTUs), revealed that all samples contained TcI, the most highly diverse and broadly distributed strain of T. cruzi. Moreover, analysis of the mitochondrial 12S gene revealed Myotis keaysi, Homo sapiens, and Gallus gallus as the main triatomine feeding sources. This study highlights a novel Citizen Science approach which may help improve the surveillance systems for CD in endemic countries.

20.
Travel Med Infect Dis ; 49: 102402, 2022.
Article de Anglais | MEDLINE | ID: mdl-35840078

RÉSUMÉ

Monkeypox is a zoonotic disease with clinical manifestations similar to smallpox in humans. Since May 13, 2022, an increasing number of suspected and confirmed cases have been reported, affecting non-endemic regions across the globe. More strikingly, reports from the current outbreak reveal unique aspects regarding transmission dynamics and an unprecedented, rapidly expanding and sustained community transmission. As demonstrated through the still-ongoing COVID-19 pandemic, genomic surveillance has been an essential resource for monitoring and tracking the evolution of pathogens of public health relevance. Herein, we performed a phylogenomic analysis of available Monkeypox virus (MPXV) genomes to determine their evolution and diversity. Our analysis revealed that all MPXV genomes grouped into three monophyletic clades: two previously characterized clades and a newly emerging clade harboring genomes from the ongoing 2022 multi-country outbreak with 286 genomes comprising the hMPXV-1A clade and the newly classified lineages: A.1 (n = 6), A.1.1 (n = 1), A.2 (n = 3) and B.1 (n = 262), where lineage B.1 includes all MPXV genomes from the 2022 outbreak. Finally, it was estimated that B.1 lineage of this clade emerged in Europe on 03/02/2022 [95%CI = 11/13/2021 to 05/10/2022]. The exceptional surge of cases and the broader geographical expansion suggest multifactorial factors as drivers of the current outbreak dynamics. Such factors may include the cessation of smallpox vaccination and its potential spread across particular networks. Integrating pertinent epidemiological information with genomic surveillance information will help generate real-time data to help implement adequate preventive and control measures by optimizing public health decisions to mitigate this outbreak.


Sujet(s)
COVID-19 , Variole , Épidémies de maladies , Humains , Virus de la variole simienne/génétique , Pandémies , Phylogenèse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE