Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Breast Cancer Res ; 23(1): 76, 2021 07 27.
Article de Anglais | MEDLINE | ID: mdl-34315513

RÉSUMÉ

BACKGROUND: Doxorubicin (Dox) is a widely used chemotherapy, but its effectiveness is limited by dose-dependent side effects. Although lower Dox doses reduce this risk, studies have reported higher recurrence of local disease with no improvement in survival rate in patients receiving low doses of Dox. To effectively mitigate this, a better understanding of the adverse effects of suboptimal Dox doses is needed. METHODS: Effects of sublethal dose of Dox on phenotypic changes were assessed with light and confocal microscopy. Migratory and invasive behavior were assessed by wound healing and transwell migration assays. MTT and LDH release assays were used to analyze cell growth and cytotoxicity. Flow cytometry was employed to detect cell surface markers of cancer stem cell population. Expression and activity of matrix metalloproteinases were probed with qRT-PCR and zymogen assay. To identify pathways affected by sublethal dose of Dox, exploratory RNAseq was performed and results were verified by qRT-PCR in multiple cell lines (MCF7, ZR75-1 and U-2OS). Regulation of Src Family kinases (SFK) by key players in DNA damage response was assessed by siRNA knockdown along with western blot and qRT-PCR. Dasatinib and siRNA for Fyn and Yes was employed to inhibit SFKs and verify their role in increased migration and invasion in MCF7 cells treated with sublethal doses of Dox. RESULTS: The results show that sublethal Dox treatment leads to increased migration and invasion in otherwise non-invasive MCF7 breast cancer cells. Mechanistically, these effects were independent of the epithelial mesenchymal transition, were not due to increased cancer stem cell population, and were not observed with other chemotherapies. Instead, sublethal Dox induces expression of multiple SFK-including Fyn, Yes, and Src-partly in a p53 and ATR-dependent manner. These effects were validated in multiple cell lines. Functionally, inhibiting SFKs with Dasatinib and specific downregulation of Fyn suppressed Dox-induced migration and invasion of MCF7 cells. CONCLUSIONS: Overall, this study demonstrates that sublethal doses of Dox activate a pro-invasive, pro-migration program in cancer cells. Furthermore, by identifying SFKs as key mediators of these effects, our results define a potential therapeutic strategy to mitigate local invasion through co-treatment with Dasatinib.


Sujet(s)
Mouvement cellulaire/effets des médicaments et des substances chimiques , Doxorubicine/pharmacologie , src-Family kinases/métabolisme , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Adhérence cellulaire/effets des médicaments et des substances chimiques , Adhérence cellulaire/génétique , Lignée cellulaire tumorale , Mouvement cellulaire/génétique , Relation dose-effet des médicaments , Femelle , Humains , Inhibiteurs de protéines kinases/pharmacologie , Protéine p53 suppresseur de tumeur/métabolisme , src-Family kinases/antagonistes et inhibiteurs
2.
Viruses ; 12(10)2020 10 01.
Article de Anglais | MEDLINE | ID: mdl-33019624

RÉSUMÉ

Although extracellular vesicle (EV) surface electrostatic properties (measured as zeta potential, ζ-potential) have been reported by many investigators, the biophysical implications of charge and EV origin remains uncertain. Here, we compared the ζ-potential of human blood EVs (BEVs) and semen EVs (SEVs) from 26 donors that were HIV-infected (HIV+, n = 13) or HIV uninfected (HIV-, n = 13). We found that, compared to BEVs that bear neutral surface charge, SEVs were significantly more negatively charged, even when BEVs and SEVs were from the same individual. Comparison of BEVs and SEVs from HIV- and HIV+ groups revealed subtle HIV-induced alteration in the ζ-potential of EVs, with the effect being more significant in SEVs (∆ζ-potential = -8.82 mV, p-value = 0.0062) than BEVs (∆ζ-potential = -1.4 mV, p-value = 0.0462). These observations were validated by differences in the isoelectric point (IEP) of EVs, which was in the order of HIV + SEV ≤ HIV-SEV ≪ HIV + BEV ≤ HIV-BEV. Functionally, the rate and efficiency of SEV internalization by the human cervical epithelial cell line, primary peripheral blood lymphocytes, and primary blood-derived monocytes were significantly higher than those of BEVs. Mechanistically, removal of sialic acids from the surface of EVs using neuraminidase treatment significantly decreased SEV's surface charge, concomitant with a substantial reduction in SEV's internalization. The neuraminidase effect was independent of HIV infection and insignificant for BEVs. Finally, these results were corroborated by enrichment of glycoproteins in SEVs versus BEVs. Taken together, these findings uncover fundamental tissue-specific differences in surface electrostatic properties of EVs and highlight the critical role of surface charge in EV/target cell interactions.


Sujet(s)
Vésicules extracellulaires/métabolisme , Infections à VIH/virologie , VIH (Virus de l'Immunodéficience Humaine)/physiologie , Électricité statique , Pénétration virale , Sang , Communication cellulaire , Lignée cellulaire , Cellules épithéliales , Glycocalyx , Humains , Monocytes/virologie , Sialidase , Sperme , Propriétés de surface
3.
Cells ; 8(9)2019 09 03.
Article de Anglais | MEDLINE | ID: mdl-31484431

RÉSUMÉ

Semen exosomes (SE) from HIV-uninfected (HIV-) individuals potently inhibit HIV infection in vitro. However, morphological changes in target cells in response to SE have not been characterized or have the effect of HIV infection or the use of illicit substances, specifically psychostimulants, on the function of SE been elucidated. The objective of this study was to evaluate the effect of HIV infection, psychostimulant use, and both together on SE-mediated regulation of monocyte function. SE were isolated from semen of HIV- and HIV-infected (HIV+) antiretroviral therapy (ART)-naive participants who reported either using or not using psychostimulants. The SE samples were thus designated as HIV-Drug-, HIV-Drug+, HIV+Drug-, and HIV+Drug+. U937 monocytes were treated with different SEs and analyzed for changes in transcriptome, morphometrics, actin reorganization, adhesion, and chemotaxis. HIV infection and/or use of psychostimulants had minimal effects on the physical characteristics of SE. However, different SEs had diverse effects on the messenger RNA signature of monocytes and rapidly induced monocyte adhesion and spreading. SE from HIV infected or psychostimulants users but not HIV-Drug- SE, stimulated actin reorganization, leading to the formation of filopodia-like structures and membrane ruffles containing F-actin and vinculin that in some cases were colocalized. All SE stimulated monocyte chemotaxis to HIV secretome and activated the secretion of matrix metalloproteinases, a phenotype exacerbated by HIV infection and psychostimulant use. SE-directed regulation of cellular morphometrics and chemotaxis depended on the donor clinical status because HIV infection and psychostimulant use altered SE function. Although our inclusion criteria specified the use of cocaine, humans are poly-drug and alcohol users and our study participants used psychostimulants, marijuana, opiates, and alcohol. Thus, it is possible that the effects observed in this study may be due to one of these other substances or due to an interaction between different substances.


Sujet(s)
Adhérence cellulaire , Chimiotaxie , Troubles liés à la cocaïne/métabolisme , Exosomes/métabolisme , Infections à VIH/métabolisme , Monocytes/métabolisme , Sperme/métabolisme , Actines/métabolisme , Adulte , Troubles liés à la cocaïne/complications , Infections à VIH/complications , Humains , Mâle , Matrix metalloproteinases/métabolisme , Monocytes/physiologie , Transcriptome , Cellules U937
4.
Sci Rep ; 8(1): 17608, 2018 12 04.
Article de Anglais | MEDLINE | ID: mdl-30514852

RÉSUMÉ

Bone marrow stromal antigen 2 (BST-2) mediates various facets of cancer progression and metastasis. Here, we show that BST-2 is linked to poor survival in invasive breast cancer patients as its expression positively correlates with disease severity. However, the mechanisms that drive the pro-metastatic functions of BST-2 are not fully understood. Correlation of BST-2 expression and tumor aggressiveness was analyzed in human tissue samples. Migration, invasion, and competitive experimental metastasis assays were used to measure the cellular responses after silencing BST-2 expression. Using a mouse model of breast cancer, we show that BST-2 promotes metastasis independent of the primary tumor. Additional experiments show that suppression of BST-2 renders non-adherent cancer cells non-viable by sensitizing cells to anoikis. Embedment of cancer cells in basement membrane matrix reveals that silencing BTS-2 expression inhibits invadopodia formation, extracellular matrix degradation, and subsequent cell invasion. Competitive experimental pulmonary metastasis shows that silencing BST-2 reduces the numbers of viable circulating tumor cells (CTCs) and decreases the efficiency of lung colonization. Our data define a previously unknown function for BST-2 in the i) formation of invadopodia, ii) degradation of extracellular matrix, and iii) protection of CTCs from hemodynamic stress. We believe that physical (tractional forces) and biochemical (ECM type/composition) cues may control BST-2's role in cell survival and invadopodia formation. Collectively, our findings highlight BST-2 as a key factor that allows cancer cells to invade, survive in circulation, and at the metastatic site.


Sujet(s)
Antigènes CD/biosynthèse , Tumeurs du sein/mortalité , Tumeurs du sein/anatomopathologie , Tumeurs du poumon/mortalité , Tumeurs du poumon/secondaire , Animaux , Mouvement cellulaire , Modèles animaux de maladie humaine , Protéines liées au GPI/biosynthèse , Humains , Glycoprotéines membranaires , Cellules souches mésenchymateuses , Souris , Invasion tumorale , Cellules tumorales circulantes , Analyse de survie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE