Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chemphyschem ; 25(9): e202400391, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38712664

RÉSUMÉ

The front cover artwork is provided by Prof. Papadantonakis' group. The image shows a Watson-Crick Guanine-Cytosine pair, and the difference between vertical and adiabatic ionization potentials. Read the full text of the Research Article at 10.1002/cphc.202300946.


Sujet(s)
Appariement de bases , Cytosine , Guanine , Cytosine/composition chimique , Guanine/composition chimique , ADN/composition chimique
2.
Chemphyschem ; 25(9): e202300946, 2024 May 02.
Article de Anglais | MEDLINE | ID: mdl-38381922

RÉSUMÉ

Gas-phase and aqueous vertical ionization potentials, vIPgas and vIPaq respectively and measurements of the molecular electrostatic and local ionization maps calculated at the DFT/B3LYP-D3/ 6-311+G** level of theory and the C-PCM reaction field model for single- and double-stranded CpG and 5MeCpG pairs show that the vIPaq for single- and double-stranded pairs of C-G and 5MeC-G are practically the same, in the range of 5.79 to 5.81 eV. The aqueous adiabatic ionization potentials for single-stranded CpG and 5MeCpG are 5.52 eV and 5.51 eV respectively and they reflect the nuclear reorganization that takes place after the abstraction of the electron. The aqueous adiabatic ionization energy values that correspond to the CpG+. radical cation and the hydrated electron, e-,, being at infinite distance, adIPaq+Vo, are 3.92 eV and 3.91 eV respectively with (Vo=-1.6 eV) Analysis of data suggest that the HOMO-LUMO energy gap in the hard/soft-acid/base (HSAB) concept cannot be used a priori to determine the effect of cytosine methylation on the guanine enhanced oxidative damage in DNA.


Sujet(s)
Appariement de bases , Cytosine , Théorie de la fonctionnelle de la densité , Guanine , Cytosine/composition chimique , Guanine/composition chimique , ADN/composition chimique , Électricité statique , Eau/composition chimique
3.
Proteins ; 89(6): 683-696, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-33491267

RÉSUMÉ

Phenylketonuria (PKU) is a genetic disorder that if left untreated can lead to behavioral problems, epilepsy, and even mental retardation. PKU results from mutations within the phenylalanine-4-hydroxylase (PAH) gene that encodes for the PAH protein. The study of all PAH causing mutations is improbable using experimental techniques. In this study, a collection of in silico resources, sorting intolerant from tolerant, Polyphen-2, PhD-SNP, and MutPred were used to identify possible pathogenetic and deleterious PAH non-synonymous single nucleotide polymorphisms (nsSNPs). We identified two variants of PAH, I65N and L311P, to be the most deleterious and disease causing nsSNPs. Molecular dynamics (MD) simulations were carried out to characterize these point mutations on the atomic level. MD simulations revealed increased flexibility and a decrease in the hydrogen bond network for both mutants compared to the native protein. Free energy calculations using the MM/GBSA approach found that BH4 , a drug-based therapy for PKU patients, had a higher binding affinity for I65N and L311P mutants compared to the wildtype protein. We also identify important residues in the BH4 binding pocket that may be of interest for the rational drug design of other PAH drug-based therapies. Lastly, free energy calculations also determined that the I65N mutation may impair the dimerization of the N-terminal regulatory domain of PAH.


Sujet(s)
Coenzymes/composition chimique , Phenylalanine 4-monooxygenase/composition chimique , Phénylcétonuries/génétique , Mutation ponctuelle , Polymorphisme de nucléotide simple , Sites de fixation , Bioptérines/analogues et dérivés , Coenzymes/métabolisme , Conception de médicament , Expression des gènes , Humains , Liaison hydrogène , Cinétique , Simulation de dynamique moléculaire , Phenylalanine 4-monooxygenase/génétique , Phenylalanine 4-monooxygenase/métabolisme , Phénylcétonuries/traitement médicamenteux , Phénylcétonuries/métabolisme , Phénylcétonuries/anatomopathologie , Liaison aux protéines , Structure en hélice alpha , Structure en brin bêta , Motifs et domaines d'intéraction protéique , Multimérisation de protéines , Spécificité du substrat , Thermodynamique
4.
Proc Natl Acad Sci U S A ; 107(13): 5821-6, 2010 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-20220103

RÉSUMÉ

Protein-chromophore interactions in photoreceptors often shift the chromophore absorbance maximum to a biologically relevant spectral region. A fundamental question regarding such spectral tuning effects is how the electronic ground state S(0) and excited state S(1) are modified by the protein. It is widely assumed that changes in energy gap between S(0) and S(1) are the main factor in biological spectral tuning. We report a generally applicable approach to determine if a specific residue modulates the energy gap, or if it alters the equilibrium nuclear geometry or width of the energy surfaces. This approach uses the effects that changes in these three parameters have on the absorbance and fluorescence emission spectra of mutants. We apply this strategy to a set of mutants of photoactive yellow protein (PYP) containing all 20 side chains at active site residue 46. While the mutants exhibit significant variation in both the position and width of their absorbance spectra, the fluorescence emission spectra are largely unchanged. This provides strong evidence against a major role for changes in energy gap in the spectral tuning of these mutants and reveals a change in the width of the S(1) energy surface. We determined the excited state lifetime of selected mutants and the observed correlation between the fluorescence quantum yield and lifetime shows that the fluorescence spectra are representative of the energy surfaces of the mutants. These results reveal that residue 46 tunes the absorbance spectrum of PYP largely by modulating the width of the S(1) energy surface.


Sujet(s)
Protéines bactériennes/composition chimique , Photorécepteurs microbiens/composition chimique , Substitution d'acide aminé , Protéines bactériennes/génétique , Phénomènes biophysiques , Domaine catalytique/génétique , Halorhodospira halophila/composition chimique , Halorhodospira halophila/génétique , Modèles moléculaires , Mutagenèse dirigée , Photorécepteurs microbiens/génétique , Théorie quantique , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Spectrométrie de fluorescence , Spectrophotométrie
5.
Biochemistry ; 47(52): 13800-10, 2008 Dec 30.
Article de Anglais | MEDLINE | ID: mdl-19102703

RÉSUMÉ

Protein-ligand interactions alter the properties of active site groups to achieve specific biological functions. The active site of photoactive yellow protein (PYP) provides a model system for studying such functional tuning. PYP is a small bacterial photoreceptor with photochemistry based on its p-coumaric acid (pCA) chromophore. The absorbance maximum and pK(a) of the pCA in the active site of native PYP are shifted from 400 nm and 8.8 in water to 446 nm and 2.8 in the native protein milieu, respectively, by protein-ligand interactions. We report high-throughput microscale methods for the purification and spectroscopic investigation of PYP and use these to examine the role of active site residue Glu46 in PYP, which is hydrogen bonded to the pCA anion. The functional and structural attributes of the 19 substitution mutants of PYP at critical active site position 46 vary widely, with absorbance maxima from 441 to 478 nm, pCA fluorescence quantum yields from 0.19 to 1.4%, pCA pK(a) values from 3.0 to 9.0, and protein folding stabilities from 6.5 to 12.9 kcal/mol. The kinetics of the last photocycle transition vary by more than 4 orders of magnitude and are often strongly biphasic. Only E46Q PYP exhibits a greatly accelerated photocycling rate. All substitutions yield a folded, photoactive PYP, illustrating the robustness of protein structure and function. Correlations between side chain and mutant properties establish the importance of residue 46 in tuning the function of PYP and the significance of the strength of its hydrogen bond to the pCA. Native PYP exhibits the lowest values for pCA fluorescence quantum yield and pK(a), indicating their functional relevance. These results demonstrate the value of quantitative high-throughput biophysical studies of proteins.


Sujet(s)
Protéines bactériennes/composition chimique , Acides coumariques/composition chimique , Photorécepteurs microbiens/composition chimique , Domaine catalytique , Liaison hydrogène , Ligands , Mutation , Photochimie , Liaison aux protéines , Conformation des protéines , Analyse spectrale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE