Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 9 de 9
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chemphyschem ; : e202400272, 2024 May 28.
Article de Anglais | MEDLINE | ID: mdl-38805153

RÉSUMÉ

Chemical reactions in the gas phase of the interstellar medium face significant challenges due to its extreme conditions (i.e., low gas densities and temperatures), necessitating the presence of dust grains to facilitate the synthesis of molecules inaccessible in the gas phase. While interstellar grains are known to enhance encounter rates and dissipate energy from exothermic reactions, their potential as chemical catalysts remain less explored. Here, we present mechanistic insights into the Fischer-Tropsch-type methanol (FTT-CH3OH) synthesis by reactivity of CO with H2 and using cosmic FeS surfaces as heterogeneous catalysts. Periodic quantum chemical calculations were employed to characterize the potential energy surface of the reactions on the (011) and (001) FeS surfaces, considering different Fe coordination environments and S vacancies. Kinetic calculations were also conducted to assess catalytic capacity and allocate reaction processes within the astrochemical framework. Findings demonstrate the feasibility of FeS-based astrocatalysis in the FTT-CH3OH synthesis. The reactions and their energetics were elucidated from a mechanistic standpoint. Kinetic analysis demonstrates the temperature dependency of the simulated processes, underscoring the compulsory need of energy sources considering the astrophysical scenario. Our results provide insights into the presence of CH3OH in diverse regions where current models struggle to explain its observational quantity.

2.
ACS Sustain Chem Eng ; 11(43): 15544-15555, 2023 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-37920799

RÉSUMÉ

The development of efficient catalysts for the chemical recycling of poly(ethylene terephthalate) (PET) is essential to tackling the global issue of plastic waste. There has been intense interest in heterogeneous catalysts as a sustainable catalyst system for PET depolymerization, having the advantage of easy separation and reuse after the reaction. In this work, we explore heterogeneous catalyst design by comparing metal-ion (Fe3+) and metal-oxide nanoparticle (Fe2O3 NP) catalysts immobilized on mesoporous silica (SiO2) functionalized with different N-containing amine ligands. Quantitative solid-state nuclear magnetic resonance (NMR) spectroscopy confirms successful grafting and elucidates the bonding mode of the organic ligands on the SiO2 surface. The surface amine ligands act as organocatalysts, enhancing the catalytic activity of the active metal species. The Fe2O3 NP catalysts in the presence of organic ligands outperform bare Fe2O3 NPs, Fe3+-ion-immobilized catalysts and homogeneous FeCl3 salts, with equivalent Fe loading. X-ray photoelectron spectroscopy analysis indicates charge transfer between the amine ligands and Fe2O3 NPs and the electron-donating ability of the N groups and hydrogen bonding may also play a role in the higher performance of the amine-ligand-assisted Fe2O3 NP catalysts. Density functional theory (DFT) calculations also reveal that the reactivity of the ion-immobilized catalysts is strongly correlated to the ligand-metal binding energy and that the products in the glycolysis reaction catalyzed by the NP catalysts are stabilized, showing a significant exergonic character compared to single ion-immobilized Fe3+ ions.

3.
Soft Matter ; 19(42): 8112-8123, 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37846598

RÉSUMÉ

Nature employs spontaneous self-organization of supramolecular bonds to create complex matter capable of adaptation and self-healing. Accordingly, the self-sorting of unlike ligands towards a cooperative heteroleptic complex or narcistic homoleptic association in a mixed ligand system is frequently employed to form interchangeable stimuli-responsive complex geometries with a wide range of applications. This notion is however just rarely employed in the organization of polymer networks. In this paper, we report the free-formation of heteroleptic complexes between tetra-am poly(ethylene glycol) (tetraPEG) precursors functionalized either with pyridine (tetraPy) or phenanthroline (tetraEPhen). Among a wide range of studied metal ions, tetraPy could form a network only in combination with Pd2+, presumably with a square-planar geometry, highlighting the importance of complex strength and stability in forming gels with monodentate ligands. Also, mixed networks with tetraEPhen form only in combination with Pd2+ and Fe2+, with strengths surpassing those of individual components and stabilities incomparable to those of parent networks, indicative of heteroleptic complexation. Extensive rheological, UV-vis, and DFT simulation studies revealed the coexistence of different coordination geometries, with an octahedral arrangement prevailing in the presence of Fe2+ and a square-planar geometry in the presence of Pd2+. Therefore, this study offers new opportunities for the development of stimuli-responsive topology-switching polymer networks.

4.
Chempluschem ; 88(1): e202200432, 2023 01.
Article de Anglais | MEDLINE | ID: mdl-36592006

RÉSUMÉ

Continuing efforts aimed at performing the 1-decene polymerization to low viscosity polyalphaolefins (PAO)s using a less hazardous AlCl3 catalyst than boron-based analogs, the basic mechanisms of this system were revealed in this research. In this aspect, neat AlCl3 and AlCl3 /toluene were carried out to perform 1-decene polymerizations. Microstructure analyses of the as-synthesized oils revealed low molecular weight (708 vs. 1529 g/mol), kinematic viscosity (KV100 =6.4 vs. 22.2 cSt), and long chain branching (82.1 vs. 84.7) of PAO from the system containing toluene solvent. Furthermore, NMR analysis confirmed various types of short chain branch (SCB) with the inclusion of toluene ring in the structure of final PAO chains. Then, to shed light on the basic mechanisms of cationic polymerization of 1-decene including: i) chain initiation, ii) chain transfer to the monomer, iii) isomerization of the carbocation via a chain walking mechanism (causes different SCB length), and iv) binding of toluene ring to the propagating PAO chain (to yield aromatic containing oligomers), molecular modeling at the DFT level was employed. The energies obtained confirmed the ease of carbocation isomerization and chain transfer mechanisms in toluene medium, which well confirms the highly branched structure experimentally obtained for related PAO.


Sujet(s)
Alcènes , Toluène , Alcènes/composition chimique , Polymérisation , Toluène/composition chimique , Modèles moléculaires , Catalyse
5.
J Org Chem ; 87(8): 5149-5157, 2022 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-35319187

RÉSUMÉ

Fullerenes have potential applications in many fields. To reach their full potential, fullerenes have to be functionalized. One of the most common reactions used to functionalize fullerenes is the Diels-Alder cycloaddition. In this case, it is important to control the regioselectivity of the cycloaddition during the formation of higher adducts. In C60, successive Diels-Alder cycloadditions lead to the Th-symmetric hexakisadduct. In this work, we explore computationally using density functional theory (DFT) how the presence of a [10]cycloparaphenylene ring encapsulating C60 ([10]CPP⊃C60) affects the regioselectivity of multiple additions to C60. Our results show that the presence of the [10]CPP ring changes the preferred sites of cycloaddition compared to free C60 and leads to the formation of the tetrakisadduct. Somewhat surprisingly, our calculations predict formation of this particular tetrakisadduct to be more favored in [10]CPP⊃C60 than in free C60.

6.
J Colloid Interface Sci ; 581(Pt B): 939-953, 2021 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-32956913

RÉSUMÉ

To achieve efficient hydrofinishing of polyalfaolefin based lubricants under mild reaction condition, a novel catalyst is designed and fabricated through supporting Pd nanoparticles on ligand functionalized halloysite clay. In this line, first, using DFT calculations a scan of a library of 36 diamines was performed to find the most proper ligand that can provide the best interactions with Pd nanoparticles, improve Pd anchoring and supress Pd leaching. Characterization of the rather strong covalent and ionic interactions by a Mayer Bond Order analysis, and the non-covalent interactions by NCI plots as well, unveiled the preference for a particular system. The perfect in silico candidate was then studied on an experimental level, and also by studying its reaction profile for the hydrogenation of ethylene by calculations. In the experimental section, halloysite was functionalized with the selected ligand in simulation part and employed for the hydrofinishing of polyalfaolefin type lubricants. Characterization results revealed successful synthesis of the nano catalyst containing tiny Pd nanoparticles with a mean diameter in the range of 2.37 ± 0.5 nm, which homogeneously dispersed on the functionalized halloysite. The synthesized catalyst exhibited excellent activity (98% hydrogenation yield after 6 h) under mild reaction condition (T = 130 °C and PH2 = 6 bar). Furthermore, the catalyst can be recycled for several times with insignificant Pd leaching and loss of its activity.

7.
Nat Commun ; 11(1): 1059, 2020 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-32103008

RÉSUMÉ

Finding heterogeneous catalysts that are superior to homogeneous ones for selective catalytic transformations is a major challenge in catalysis. Here, we show how micropores in metal-organic frameworks (MOFs) push homogeneous catalytic reactions into kinetic regimes inaccessible under standard conditions. Such property allows branched selectivity up to 90% in the Co-catalysed hydroformylation of olefins without directing groups, not achievable with existing catalysts. This finding has a big potential in the production of aldehydes for the fine chemical industry. Monte Carlo and density functional theory simulations combined with kinetic models show that the micropores of MOFs with UMCM-1 and MOF-74 topologies increase the olefins density beyond neat conditions while partially preventing the adsorption of syngas leading to high branched selectivity. The easy experimental protocol and the chemical and structural flexibility of MOFs will attract the interest of the fine chemical industries towards the design of heterogeneous processes with exceptional selectivity.

8.
J Org Chem ; 84(23): 15538-15548, 2019 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-31693372

RÉSUMÉ

The fact that intramolecular resonance-assisted hydrogen bonds (RAHBs) are stronger than conventional ones is attributed to the partial delocalization of the π-electrons within the hydrogen bond (HB) motif, the so-called quasi-ring. If an aromatic ring is involved in the formation of the RAHB, previous studies have shown that there is an interplay between aromaticity and HB strength. Moreover, in 1,3-dihydroxyaryl-2-aldehydes, some of us found that the position of the quasi-ring formed by the substituents interacting through RAHB influences the strength of the H bonding, the HBs being stronger when a kinked-like structure is generated by formation of the quasi-ring. In this work, we explore this concept further by considering a set of acenes and phenacenes of different sizes with two o-hydroxyaldehyde substituents. Calculations with the CAM-B3LYP/6-311++G(d,p) + GD3B method show that for long acenes or phenacenes, once the substituent effect loses importance because quasi-rings are pulled apart far from each other, the different topologies rule the HB distances. This fact can be explained in most cases using an extended Clar's aromatic π-sextet model. In some kinked systems, however, the justification from the Clar model has to be complemented by taking into account the repulsion between hydrogen atoms. Triphenylene-like compounds with different numbers of benzene rings have been studied, finding out a very good relationship between aromaticity of the ipso- and quasi-rings with the RAHB distances. This result confirms the importance of the communication of the π-systems of the ipso- and quasi-rings.

9.
J Phys Chem A ; 122(8): 2279-2287, 2018 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-29378123

RÉSUMÉ

Intramolecular resonance-assisted hydrogen bonds (RAHBs) are stronger than conventional hydrogen bonds (HBs) thanks to the extra stabilization connected with the partial delocalization of the π-electrons within the HB motif containing conjugated formally single and double bonds. When these conjugated bonds are part of an aromatic ring, there is an interplay between resonance-assisted hydrogen bonding and the aromaticity of the ring. The main aim of the present work is to analyze the changes in RAHB strength by substitution in the aromatic ring. For this purpose, we use density functional theory methods to study all possible mono- and disubstitutions in the four free positions of the aromatic ring of o-hydroxybenzaldehyde. As substituents, we consider three π-electron donating groups (EDG: NH2, OH, and F) and three π-electron withdrawing groups (EWG: NO2, NO, and CN). We show that it is possible to tune the HB bond distance in the RAHB by locating different substituents in given positions of the aromatic ring. Indeed, certain combinations of EDG and EWD result in a reduction or increase of the HB distance by up to 0.05 Å. Results found can be explained by considering the existence of a resonance effect of the π-electrons within the HB motif.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...