Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Adv Sci (Weinh) ; 11(31): e2404997, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38888516

RÉSUMÉ

The fabrication of environmentally benign, solvent-processed, efficient, organic photovoltaic sub-modules remains challenging due to the rapid aggregation of the current high performance non-fullerene acceptors (NFAs). In this regard, design of new NFAs capable of achieving optimal aggregation in large-area organic photovoltaic modules has not been realized. Here, an NFA named BTA-HD-Rh is synthesized with longer (hexyl-decyl) side chains that exhibit good solubility and optimal aggregation. Interestingly, integrating a minute amount of new NFA (BTA-HD-Rh) into the PM6:L8-BO system enables the improved solubility in halogen-free solvents (o-xylene:carbon disulfide (O-XY:CS2)) with controlled aggregation is found. Then solar sub-modules are fabricated at ambient condition (temperature at 25 ± 3 °C and humidity: 30-45%). Ultimately, the champion 55 cm2 sub-modules achieve exciting efficiency of >16% in O-XY:CS2 solvents, which is the highest PCE reported for sub-modules. Notably, the highest efficiency of BTA-HD-Rh doped PM6:L8-BO is very well correlated with high miscibility with low Flory-Huggins parameter (0.372), well-defined nanoscale morphology, and high charge transport. This study demonstrates that a careful choice of side chain engineering for an NFA offers fascinating features that control the overall aggregation of active layer, which results in superior sub-module performance with environmental-friendly solvents.

2.
ACS Appl Mater Interfaces ; 16(3): 3359-3367, 2024 Jan 24.
Article de Anglais | MEDLINE | ID: mdl-38207003

RÉSUMÉ

Dopant-free polymeric hole transport materials (HTMs) have attracted considerable attention in perovskite solar cells (PSCs) due to their high carrier mobilities and excellent hydrophobicity. They are considered promising candidates for HTMs to replace commercial Spiro-OMeTAD to achieve long-term stability and high efficiency in PSCs. In this study, we developed BDT-TA-BTASi, a conjugated donor-π-acceptor polymeric HTM. The donor benzo[1,2-b:4,5-b']dithiophene (BDT) and acceptor benzotriazole (BTA) incorporated pendant siloxane, and alkyl side chains led to high hole mobility and solubility. In addition, BDT-TA-BTASi can effectively passivate the perovskite layer and markedly decrease the trap density. Based on these advantages, dopant-free BDT-TA-BTASi-based PSCs achieved an efficiency of over 21.5%. Furthermore, dopant-free BDT-TA-BTASi-based devices not only exhibited good stability in N2 (retaining 92% of the initial efficiency after 1000 h) but also showed good stability at high-temperature (60 °C) and -humidity conditions (80 ± 10%) (retaining 92 and 82% of the initial efficiency after 400 h). These results demonstrate that BDT-TA-BTASi is a promising HTM, and the study provides guidance on dopant-free polymeric HTMs to achieve high-performance PSCs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE