Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Neural Netw ; 179: 106543, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39089158

RÉSUMÉ

Recent successes in robot learning have significantly enhanced autonomous systems across a wide range of tasks. However, they are prone to generate similar or the same solutions, limiting the controllability of the robot to behave according to user intentions. These limited robot behaviors may lead to collisions and potential harm to humans. To resolve these limitations, we introduce a semi-autonomous teleoperation framework that enables users to operate a robot by selecting a high-level command, referred to as option. Our approach aims to provide effective and diverse options by a learned policy, thereby enhancing the efficiency of the proposed framework. In this work, we propose a quality-diversity (QD) based sampling method that simultaneously optimizes both the quality and diversity of options using reinforcement learning (RL). Additionally, we present a mixture of latent variable models to learn multiple policy distributions defined as options. In experiments, we show that the proposed method achieves superior performance in terms of the success rate and diversity of the options in simulation environments. We further demonstrate that our method outperforms manual keyboard control for time duration over cluttered real-world environments.


Sujet(s)
12476 , Robotique , Robotique/méthodes , Humains , Apprentissage machine , Simulation numérique , Algorithmes , 29935
2.
Sensors (Basel) ; 16(8)2016 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-27517928

RÉSUMÉ

There is sufficient evidence proving the impact that negative lifestyle choices have on people's health and wellness. Changing unhealthy behaviours requires raising people's self-awareness and also providing healthcare experts with a thorough and continuous description of the user's conduct. Several monitoring techniques have been proposed in the past to track users' behaviour; however, these approaches are either subjective and prone to misreporting, such as questionnaires, or only focus on a specific component of context, such as activity counters. This work presents an innovative multimodal context mining framework to inspect and infer human behaviour in a more holistic fashion. The proposed approach extends beyond the state-of-the-art, since it not only explores a sole type of context, but also combines diverse levels of context in an integral manner. Namely, low-level contexts, including activities, emotions and locations, are identified from heterogeneous sensory data through machine learning techniques. Low-level contexts are combined using ontological mechanisms to derive a more abstract representation of the user's context, here referred to as high-level context. An initial implementation of the proposed framework supporting real-time context identification is also presented. The developed system is evaluated for various realistic scenarios making use of a novel multimodal context open dataset and data on-the-go, demonstrating prominent context-aware capabilities at both low and high levels.


Sujet(s)
Comportement de choix/physiologie , Fouille de données/méthodes , Mode de vie , Monitorage physiologique/méthodes , Algorithmes , Conscience immédiate/physiologie , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE