Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
1.
Cells ; 12(20)2023 10 11.
Article de Anglais | MEDLINE | ID: mdl-37887282

RÉSUMÉ

Oncogenic K-RAS mutations occur in approximately 25% of human lung cancers and are most frequently found in codon 12 (G12C, G12V, and G12D). Mutated K-RAS inhibitors have shown beneficial results in many patients; however, the inhibitors specifically target K-RASG12C and acquired resistance is a common occurrence. Therefore, new treatments targeting all kinds of oncogenic K-RAS mutations with a durable response are needed. RUNX3 acts as a pioneer factor of the restriction (R)-point, which is critical for the life and death of cells. RUNX3 is inactivated in most K-RAS-activated mouse and human lung cancers. Deletion of mouse lung Runx3 induces adenomas (ADs) and facilitates the development of K-Ras-activated adenocarcinomas (ADCs). In this study, conditional restoration of Runx3 in an established K-Ras-activated mouse lung cancer model regressed both ADs and ADCs and suppressed cancer recurrence, markedly increasing mouse survival. Runx3 restoration suppressed K-Ras-activated lung cancer mainly through Arf-p53 pathway-mediated apoptosis and partly through p53-independent inhibition of proliferation. This study provides in vivo evidence supporting RUNX3 as a therapeutic tool for the treatment of K-RAS-activated lung cancers with a durable response.


Sujet(s)
Adénocarcinome , Tumeurs du poumon , Animaux , Humains , Souris , Adénocarcinome/anatomopathologie , Sous-unité alpha 3 du facteur CBF/génétique , Sous-unité alpha 3 du facteur CBF/métabolisme , Gènes ras , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Récidive tumorale locale/génétique , Protéine p53 suppresseur de tumeur/génétique
2.
Mol Cells ; 46(10): 592-610, 2023 Oct 31.
Article de Anglais | MEDLINE | ID: mdl-37706312

RÉSUMÉ

The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor ß (TGFß)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFß-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFß signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFß-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFß signals and the Hippo pathway (TGFß→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Facteur de croissance transformant bêta , Protéines de signalisation YAP , Protéines adaptatrices de la transduction du signal/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Transduction du signal , Facteurs de transcription/métabolisme , Facteur de croissance transformant bêta/métabolisme , Protéines de signalisation YAP/métabolisme , Protéines de signalisation YAP/physiologie
3.
Mol Cells ; 42(12): 836-839, 2019 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-31822043

RÉSUMÉ

A tumor is an abnormal mass of tissue that arises when cells divide more than they should or do not die when they should. The cellular decision regarding whether to undergo division or death is made at the restriction (R)-point. Consistent with this, an increasingly large body of evidence indicates that deregulation of the R-point decision-making machinery accompanies the formation of most tumors. Although the R-point decision is literally a matter of life and death for the cell, and thus critical for the health of the organism, it remains unclear how a cell chooses its own fate. Recent work demonstrated that the R-point constitutes a novel oncogene surveillance mechanism operated by R-point-associated complexes of which RUNX3 and BRD2 are the core factors (Rpa-RX3 complexes). Here, we show that not only RUNX3 and BRD2, but also other members of the RUNX and BRD families (RUNX1, RUNX2, BRD3, and BRD4), are involved in R-point regulation.


Sujet(s)
Points de contrôle du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Sous-unités alpha du facteur CBF/métabolisme , Facteurs de transcription/métabolisme , Protéines du cycle cellulaire/génétique , Sous-unités alpha du facteur CBF/génétique , Régulation de l'expression des gènes , Cellules HEK293 , Humains , Mutation , Liaison aux protéines , Facteurs de transcription/génétique
4.
Nat Commun ; 10(1): 1897, 2019 04 23.
Article de Anglais | MEDLINE | ID: mdl-31015486

RÉSUMÉ

The cellular decision regarding whether to undergo proliferation or death is made at the restriction (R)-point, which is disrupted in nearly all tumors. The identity of the molecular mechanisms that govern the R-point decision is one of the fundamental issues in cell biology. We found that early after mitogenic stimulation, RUNX3 binds to its target loci, where it opens chromatin structure by sequential recruitment of Trithorax group proteins and cell-cycle regulators to drive cells to the R-point. Soon after, RUNX3 closes these loci by recruiting Polycomb repressor complexes, causing the cell to pass through the R-point toward S phase. If the RAS signal is constitutively activated, RUNX3 inhibits cell cycle progression by maintaining R-point-associated genes in an open structure. Our results identify RUNX3 as a pioneer factor for the R-point and reveal the molecular mechanisms by which appropriate chromatin modifiers are selectively recruited to target loci for appropriate R-point decisions.


Sujet(s)
Points de contrôle du cycle cellulaire/génétique , Chromatine/composition chimique , Sous-unité alpha 3 du facteur CBF/génétique , Cellules épithéliales/métabolisme , Régulation de l'expression des gènes , Animaux , Butadiènes/pharmacologie , Points de contrôle du cycle cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Chromatine/effets des médicaments et des substances chimiques , Chromatine/métabolisme , Assemblage et désassemblage de la chromatine/effets des médicaments et des substances chimiques , Sous-unité alpha 3 du facteur CBF/antagonistes et inhibiteurs , Sous-unité alpha 3 du facteur CBF/métabolisme , Kinase-4 cycline-dépendante/antagonistes et inhibiteurs , Kinase-4 cycline-dépendante/génétique , Kinase-4 cycline-dépendante/métabolisme , Drosophila melanogaster/cytologie , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Cellules épithéliales/effets des médicaments et des substances chimiques , Cellules épithéliales/anatomopathologie , Cellules HEK293 , Histone-lysine N-methyltransferase/génétique , Histone-lysine N-methyltransferase/métabolisme , Humains , Imidazoles/pharmacologie , MAP Kinase Kinase 1/antagonistes et inhibiteurs , MAP Kinase Kinase 1/génétique , MAP Kinase Kinase 1/métabolisme , MAP Kinase Kinase 4/antagonistes et inhibiteurs , MAP Kinase Kinase 4/génétique , MAP Kinase Kinase 4/métabolisme , Protéine de la leucémie myéloïde-lymphoïde/génétique , Protéine de la leucémie myéloïde-lymphoïde/métabolisme , Nitriles/pharmacologie , Pipérazines/pharmacologie , Protéines du groupe Polycomb/génétique , Protéines du groupe Polycomb/métabolisme , Inhibiteurs de protéines kinases/pharmacologie , Pyridines/pharmacologie , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Transduction du signal , Sirolimus/pharmacologie , Sérine-thréonine kinases TOR/antagonistes et inhibiteurs , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme , p38 Mitogen-Activated Protein Kinases/antagonistes et inhibiteurs , p38 Mitogen-Activated Protein Kinases/génétique , p38 Mitogen-Activated Protein Kinases/métabolisme , Protéines G ras/génétique , Protéines G ras/métabolisme
5.
J Phys Ther Sci ; 27(10): 3171-5, 2015 Oct.
Article de Anglais | MEDLINE | ID: mdl-26644668

RÉSUMÉ

[Purpose] This study was designed to test the effects of the Assistant Chair-Desk System (ACDS), which can reduce the forward tilt of the neck and trunk and the level of fatigue during long lasting study in the sitting position. [Subjects] Fourteen middle school students and 14 college students of mixed gender participated in this study. [Methods] Fatigue level, the trapezius muscle, and the forward tilt angle of the head and trunk as well as distance factors were assessed before after using a normal chair-desk system (NCDS) and the ACDS for 120 minutes. [Results] There was an interaction effect in the angle and length of the neck from the sitting posture changes after 2 hours of studying using the NCDS and ACDS. There were also significant differences in the fatigue levels, hip joint angles and the lengths from the head according to the main effects of the chair-systems. [Conclusion] The studying position while using the ACDS was determined to prevent significant fatigue levels of the muscle and body, provide support to the head, by limiting the forward movement of the neck, and prevent forward tilt of the neck and trunk, by enabling the target point and gaze to be closer to the horizontal direction.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE