Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 87
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Rep Phys Sci ; 5(2)2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38645802

RÉSUMÉ

Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities. Facilitated by microgravity crystallization of TS with the Toledo Crystallization Box, we report the 2.1 Å joint X-ray/neutron (XN) structure of TS with PLP in the internal aldimine form. Positions of hydrogens were directly determined in both the α- and ß-active sites, including PLP cofactor. The joint XN structure thus provides insight into the selective protonation of the internal aldimine and the electrostatic environment of TS necessary to understand the overall catalytic mechanism.

2.
Bioinformatics ; 39(8)2023 08 01.
Article de Anglais | MEDLINE | ID: mdl-37589594

RÉSUMÉ

MOTIVATION: Sphagnum-dominated peatlands store a substantial amount of terrestrial carbon. The genus is undersampled and under-studied. No experimental crystal structure from any Sphagnum species exists in the Protein Data Bank and fewer than 200 Sphagnum-related genes have structural models available in the AlphaFold Protein Structure Database. Tools and resources are needed to help bridge these gaps, and to enable the analysis of other structural proteomes now made possible by accurate structure prediction. RESULTS: We present the predicted structural proteome (25 134 primary transcripts) of Sphagnum divinum computed using AlphaFold, structural alignment results of all high-confidence models against an annotated nonredundant crystallographic database of over 90,000 structures, a structure-based classification of putative Enzyme Commission (EC) numbers across this proteome, and the computational method to perform this proteome-scale structure-based annotation. AVAILABILITY AND IMPLEMENTATION: All data and code are available in public repositories, detailed at https://github.com/BSDExabio/SAFA. The structural models of the S. divinum proteome have been deposited in the ModelArchive repository at https://modelarchive.org/doi/10.5452/ma-ornl-sphdiv.


Sujet(s)
Protéines végétales , Protéome , Sphagnopsida , Sphagnopsida/composition chimique , Sphagnopsida/enzymologie , Protéines végétales/composition chimique , Flux de travaux , Similitude structurale de protéines
3.
Nat Commun ; 14(1): 3900, 2023 07 18.
Article de Anglais | MEDLINE | ID: mdl-37463890

RÉSUMÉ

Membrane efflux pumps play a major role in bacterial multidrug resistance. The tripartite multidrug efflux pump system from Escherichia coli, AcrAB-TolC, is a target for inhibition to lessen resistance development and restore antibiotic efficacy, with homologs in other ESKAPE pathogens. Here, we rationalize a mechanism of inhibition against the periplasmic adaptor protein, AcrA, using a combination of hydrogen/deuterium exchange mass spectrometry, cellular efflux assays, and molecular dynamics simulations. We define the structural dynamics of AcrA and find that an inhibitor can inflict long-range stabilisation across all four of its domains, whereas an interacting efflux substrate has minimal effect. Our results support a model where an inhibitor forms a molecular wedge within a cleft between the lipoyl and αß barrel domains of AcrA, diminishing its conformational transmission of drug-evoked signals from AcrB to TolC. This work provides molecular insights into multidrug adaptor protein function which could be valuable for developing antimicrobial therapeutics.


Sujet(s)
Protéines Escherichia coli , Protéines de transport membranaire , Protéines de transport membranaire/métabolisme , Protéines Escherichia coli/métabolisme , Protéines associées à la multirésistance aux médicaments/métabolisme , Transport biologique , Escherichia coli/métabolisme , Antibactériens/pharmacologie , Antibactériens/métabolisme , Protéines de la membrane externe bactérienne/métabolisme
5.
BMC Bioinformatics ; 24(1): 189, 2023 May 09.
Article de Anglais | MEDLINE | ID: mdl-37161375

RÉSUMÉ

BACKGROUND: In a previous paper, we classified populated HLA class I alleles into supertypes and subtypes based on the similarity of 3D landscape of peptide binding grooves, using newly defined structure distance metric and hierarchical clustering approach. Compared to other approaches, our method achieves higher correlation with peptide binding specificity, intra-cluster similarity (cohesion), and robustness. Here we introduce HLA-Clus, a Python package for clustering HLA Class I alleles using the method we developed recently and describe additional features including a new nearest neighbor clustering method that facilitates clustering based on user-defined criteria. RESULTS: The HLA-Clus pipeline includes three stages: First, HLA Class I structural models are coarse grained and transformed into clouds of labeled points. Second, similarities between alleles are determined using a newly defined structure distance metric that accounts for spatial and physicochemical similarities. Finally, alleles are clustered via hierarchical or nearest-neighbor approaches. We also interfaced HLA-Clus with the peptide:HLA affinity predictor MHCnuggets. By using the nearest neighbor clustering method to select optimal allele-specific deep learning models in MHCnuggets, the average accuracy of peptide binding prediction of rare alleles was improved. CONCLUSIONS: The HLA-Clus package offers a solution for characterizing the peptide binding specificities of a large number of HLA alleles. This method can be applied in HLA functional studies, such as the development of peptide affinity predictors, disease association studies, and HLA matching for grafting. HLA-Clus is freely available at our GitHub repository ( https://github.com/yshen25/HLA-Clus ).


Sujet(s)
Logiciel , Allèles , Analyse de regroupements
6.
Appl Environ Microbiol ; 89(4): e0176822, 2023 04 26.
Article de Anglais | MEDLINE | ID: mdl-36951561

RÉSUMÉ

The hgcAB gene pair encodes mercury (Hg) methylation capability in a diverse group of microorganisms, but its evolution and transcriptional regulation remain unknown. Working from the possibility that the evolutionary function of HgcAB may not be Hg methylation, we test a possible link to arsenic resistance. Using model Hg methylator Pseudodesulfovibrio mercurii ND132, we evaluated transcriptional control of hgcAB by a putative ArsR encoded upstream and cotranscribed with hgcAB. This regulator shares homology with ArsR repressors of arsenic resistance and S-adenosylhomocysteine (SAH)-responsive regulators of methionine biosynthesis but is distinct from other ArsR/SahR proteins in P. mercurii. Using quantitative PCR (qPCR) and RNA sequencing (RNA-seq) transcriptome analyses, we confirmed this ArsR regulates hgcAB transcription and is responsive to arsenic and SAH. Additionally, RNA-seq indicated a possible link between hgcAB activity and arsenic transformations, with significant upregulation of other ArsR-regulated arsenic resistance operons alongside hgcAB. Interestingly, wild-type ND132 was less sensitive to As(V) (but not As(III)) than an hgcAB knockout strain, supporting the idea that hgcAB may be linked to arsenic resistance. Arsenic significantly impacted rates of Hg methylation by ND132; however, responses varied with culture conditions. Differences in growth and metabolic activity did not account for arsenic impacts on methylation. While arsenic significantly increased hgcAB expression, hgcAB gene and transcript abundance was not a good predictor of Hg methylation rates. Taken together, these results support the idea that Hg and As cycling are linked in P. mercurii ND132. Our results may hold clues to the evolution of hgcAB and the controls on Hg methylation in nature. IMPORTANCE This work reveals a link between microbial mercury methylation and arsenic resistance and may hold clues to the evolution of mercury methylation genes (hgcAB). Microbes with hgcAB produce methylmercury, a strong neurotoxin that readily accumulates in the food web. This study addresses a critical gap in our understanding about the environmental factors that control hgcAB expression. We show that hgcAB expression is controlled by an ArsR-like regulator responsive to both arsenic and S-adenosylhomocysteine in our model organism, Pseudodesulfovibrio mercurii ND132. Exposure to arsenic also significantly impacted Pseudodesulfovibrio mercurii ND132 mercury methylation rates. However, expression of hgcAB was not always a good predictor of Hg methylation rates, highlighting the roles of Hg bioavailability and other biochemical mechanisms in methylmercury production. This study improves our understanding of the controls on hgcAB expression, which is needed to better predict environmental methylmercury production.


Sujet(s)
Arsenic , Mercure , Composés méthylés du mercure , Composés méthylés du mercure/métabolisme , S-(5'-Désoxy-adénosyl)homocystéine/métabolisme , Mercure/métabolisme , Méthylation
7.
Nat Commun ; 14(1): 1733, 2023 03 28.
Article de Anglais | MEDLINE | ID: mdl-36977673

RÉSUMÉ

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is essential for viral replication. In addition, PLpro dysregulates the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 protein from host proteins. As a result, PLpro is a promising target for inhibition by small-molecule therapeutics. Here we design a series of covalent inhibitors by introducing a peptidomimetic linker and reactive electrophile onto analogs of the noncovalent PLpro inhibitor GRL0617. The most potent compound inhibits PLpro with kinact/KI = 9,600 M-1 s-1, achieves sub-µM EC50 values against three SARS-CoV-2 variants in mammalian cell lines, and does not inhibit a panel of human deubiquitinases (DUBs) at >30 µM concentrations of inhibitor. An X-ray co-crystal structure of the compound bound to PLpro validates our design strategy and establishes the molecular basis for covalent inhibition and selectivity against structurally similar human DUBs. These findings present an opportunity for further development of covalent PLpro inhibitors.


Sujet(s)
COVID-19 , Hépatite C chronique , Animaux , Humains , Papaïne/métabolisme , Peptide hydrolases/métabolisme , SARS-CoV-2/métabolisme , Antiviraux/pharmacologie , Antiviraux/composition chimique , Inhibiteurs de protéases , Mammifères/métabolisme
8.
J Immunol ; 210(1): 103-114, 2023 01 01.
Article de Anglais | MEDLINE | ID: mdl-36453976

RÉSUMÉ

HLA class I proteins, a critical component in adaptive immunity, bind and present intracellular Ags to CD8+ T cells. The extreme polymorphism of HLA genes and associated peptide binding specificities leads to challenges in various endeavors, including neoantigen vaccine development, disease association studies, and HLA typing. Supertype classification, defined by clustering functionally similar HLA alleles, has proven helpful in reducing the complexity of distinguishing alleles. However, determining supertypes via experiments is impractical, and current in silico classification methods exhibit limitations in stability and functional relevance. In this study, by incorporating three-dimensional structures we present a method for classifying HLA class I molecules with improved breadth, accuracy, stability, and flexibility. Critical for these advances is our finding that structural similarity highly correlates with peptide binding specificity. The new classification should be broadly useful in peptide-based vaccine development and HLA-disease association studies.


Sujet(s)
Lymphocytes T CD8+ , Peptides , Lymphocytes T CD8+/métabolisme , Allèles
9.
ACS Infect Dis ; 8(10): 2149-2160, 2022 10 14.
Article de Anglais | MEDLINE | ID: mdl-36070489

RÉSUMÉ

Optimization of compound permeation into Gram-negative bacteria is one of the most challenging tasks in the development of antibacterial agents. Two permeability barriers─the passive diffusion barrier of the outer membrane (OM) and active drug efflux─act synergistically to protect cells from the antibacterial action of compounds. In Escherichia coli (E. coli) and relatives, these two barriers sieve compounds based on different physicochemical properties that are defined by their interactions with OM porins and efflux pumps, respectively. In this study, we critically tested the hypothesis that the best substrates and inhibitors of efflux pumps are compounds that can effectively permeate the OM and are available at relatively high concentrations in the periplasm. For this purpose, we filtered a large subset of the ZINC15 database of commercially available compounds for compounds containing a primary amine, a chemical feature known to facilitate the uptake through E. coli general porins. The assembled library was screened by ensemble docking to AcrA, the periplasmic component of the AcrAB-TolC efflux pump, followed by experimental testing of the top predicted binders for antibacterial activities, efflux recognition, and inhibition. We found that the filtered primary amine library is a rich source of compounds with efflux-inhibiting activities and identified efflux pump inhibitors with novel chemical scaffolds effective against E. coli AcrAB-TolC and efflux pumps of multidrug-resistant clinical isolates of Acinetobacter baumannii. However, primary amines are not required for the recognition of compounds by efflux pumps and their efflux-inhibitory activities.


Sujet(s)
Escherichia coli , Protéines de transport membranaire , Amines , Antibactériens/composition chimique , Antibactériens/pharmacologie , Protéines de transport membranaire/composition chimique , Porines
10.
Chem Sci ; 13(34): 10057-10065, 2022 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-36128223

RÉSUMÉ

Pyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme. Between PMP NSB and catalytic Lys258 Nζ amino groups an equally shared deuterium is observed in an apparent low-barrier hydrogen bond (LBHB). Density functional theory calculations were performed to provide further evidence of this LBHB interaction. The structural arrangement and the juxtaposition of PMP and Lys258, facilitated by the LBHB, suggests active site preorganization for the incoming ketoacid substrate that initiates the second half-reaction.

11.
Commun Biol ; 5(1): 646, 2022 07 01.
Article de Anglais | MEDLINE | ID: mdl-35778602

RÉSUMÉ

The Plasminogen-Apple-Nematode (PAN) domain, with a core of four to six cysteine residues, is found in > 28,000 proteins across 959 genera. Still, its role in protein function is not fully understood. The PAN domain was initially characterized in numerous proteins, including HGF. Dysregulation of HGF-mediated signaling results in multiple deadly cancers. The binding of HGF to its cell surface receptor, c-MET, triggers all biological impacts. Here, we show that mutating four core cysteine residues in the HGF PAN domain reduces c-MET interaction, subsequent c-MET autophosphorylation, and phosphorylation of its downstream targets, perinuclear localization, cellular internalization of HGF, and its receptor, c-MET, and c-MET ubiquitination. Furthermore, transcriptional activation of HGF/c-MET signaling-related genes involved in cancer progression, invasion, metastasis, and cell survival were impaired. Thus, targeting the PAN domain of HGF may represent a mechanism for selectively regulating the binding and activation of the c-MET pathway.


Sujet(s)
Malus , Nematoda , Tumeurs , Animaux , Cystéine/génétique , Facteur de croissance des hépatocytes/génétique , Facteur de croissance des hépatocytes/métabolisme , Malus/métabolisme , Nematoda/métabolisme , Plasminogène , Protéases à sérine
12.
Sci Rep ; 12(1): 8220, 2022 05 17.
Article de Anglais | MEDLINE | ID: mdl-35581346

RÉSUMÉ

Two membrane cell envelopes act as selective permeability barriers in Gram-negative bacteria, protecting cells against antibiotics and other small molecules. Significant efforts are being directed toward understanding how small molecules permeate these barriers. In this study, we developed an approach to analyze the permeation of compounds into Gram-negative bacteria and applied it to Pseudomonas aeruginosa, an important human pathogen notorious for resistance to multiple antibiotics. The approach uses mass spectrometric measurements of accumulation of a library of structurally diverse compounds in four isogenic strains of P. aeruginosa with varied permeability barriers. We further developed a machine learning algorithm that generates a deterministic classification model with minimal synonymity between the descriptors. This model predicted good permeators into P. aeruginosa with an accuracy of 89% and precision above 58%. The good permeators are broadly distributed in the property space and can be mapped to six distinct regions representing diverse chemical scaffolds. We posit that this approach can be used for more detailed mapping of the property space and for rational design of compounds with high Gram-negative permeability.


Sujet(s)
Bactéries à Gram négatif , Pseudomonas aeruginosa , Antibactériens/composition chimique , Membrane cellulaire/métabolisme , Bactéries à Gram négatif/métabolisme , Humains , Tests de sensibilité microbienne , Perméabilité , Pseudomonas aeruginosa/métabolisme
13.
Bioinformatics ; 38(12): 3297-3298, 2022 06 13.
Article de Anglais | MEDLINE | ID: mdl-35512391

RÉSUMÉ

SUMMARY: Easy-to-use, open-source, general-purpose programs for modeling a protein structure from inter-atomic distances are needed for modeling from experimental data and refinement of predicted protein structures. OpenMDlr is an open-source Python package for modeling protein structures from pairwise distances between any atoms, and optionally, dihedral angles. We provide a user-friendly input format for harnessing modern biomolecular force fields in an easy-to-install package that can efficiently make use of multiple compute cores. AVAILABILITY AND IMPLEMENTATION: OpenMDlr is available at https://github.com/BSDExabio/OpenMDlr-amber. The package is written in Python (versions 3.x). All dependencies are open-source and can be installed with the Conda package management system. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Sujet(s)
Protéines , Logiciel
14.
ACS Pharmacol Transl Sci ; 5(4): 255-265, 2022 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-35434531

RÉSUMÉ

Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 µM. Among these, four compounds with IC50 values around 1 µM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein-inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.

15.
Nat Commun ; 13(1): 1744, 2022 04 01.
Article de Anglais | MEDLINE | ID: mdl-35365655

RÉSUMÉ

Accurate descriptions of protein-protein interactions are essential for understanding biological systems. Remarkably accurate atomic structures have been recently computed for individual proteins by AlphaFold2 (AF2). Here, we demonstrate that the same neural network models from AF2 developed for single protein sequences can be adapted to predict the structures of multimeric protein complexes without retraining. In contrast to common approaches, our method, AF2Complex, does not require paired multiple sequence alignments. It achieves higher accuracy than some complex protein-protein docking strategies and provides a significant improvement over AF-Multimer, a development of AlphaFold for multimeric proteins. Moreover, we introduce metrics for predicting direct protein-protein interactions between arbitrary protein pairs and validate AF2Complex on some challenging benchmark sets and the E. coli proteome. Lastly, using the cytochrome c biogenesis system I as an example, we present high-confidence models of three sought-after assemblies formed by eight members of this system.


Sujet(s)
Apprentissage profond , Escherichia coli/génétique , , Protéome , Alignement de séquences
16.
Biophys J ; 120(18): 3973-3982, 2021 09 21.
Article de Anglais | MEDLINE | ID: mdl-34411576

RÉSUMÉ

The multidrug efflux pumps of Gram-negative bacteria are a class of complexes that span the periplasm, coupling both the inner and outer membranes to expel toxic molecules. The best-characterized example of these tripartite pumps is the AcrAB-TolC complex of Escherichia coli. However, how the complex interacts with the peptidoglycan (PG) cell wall, which is anchored to the outer membrane (OM) by Braun's lipoprotein (Lpp), is still largely unknown. In this work, we present molecular dynamics simulations of a complete, atomistic model of the AcrAB-TolC complex with the inner membrane, OM, and PG layers all present. We find that the PG localizes to the junction of AcrA and TolC, in agreement with recent cryo-tomography data. Free-energy calculations reveal that the positioning of PG is determined by the length and conformation of multiple Lpp copies anchoring it to the OM. The distance between the PG and OM measured in cryo-electron microscopy images of wild-type E. coli also agrees with the simulation-derived spacing. Sequence analysis of AcrA suggests a conserved role for interactions with PG in the assembly and stabilization of efflux pumps, one that may extend to other trans-envelope complexes as well.


Sujet(s)
Protéines Escherichia coli , Peptidoglycane , Antibactériens , Protéines de la membrane externe bactérienne/métabolisme , Protéines de transport , Paroi cellulaire/métabolisme , Cryomicroscopie électronique , Escherichia coli/métabolisme , Protéines Escherichia coli/métabolisme , Lipoprotéines/métabolisme , Protéines de transport membranaire , Protéines associées à la multirésistance aux médicaments , Peptidoglycane/métabolisme
17.
ACS Infect Dis ; 7(9): 2650-2665, 2021 09 10.
Article de Anglais | MEDLINE | ID: mdl-34379382

RÉSUMÉ

Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.


Sujet(s)
Protéines Escherichia coli , Amides/pharmacologie , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Humains , Simulation de docking moléculaire , Protéines associées à la multirésistance aux médicaments/génétique
18.
J Phys Chem B ; 125(23): 6058-6067, 2021 06 17.
Article de Anglais | MEDLINE | ID: mdl-34077660

RÉSUMÉ

Protein-protein interactions play a key role in mediating numerous biological functions, with more than half the proteins in living organisms existing as either homo- or hetero-oligomeric assemblies. Protein subunits that form oligomers minimize the free energy of the complex, but exhaustive computational search-based docking methods have not comprehensively addressed the challenge of distinguishing a natively bound complex from non-native forms. Current protein docking approaches address this problem by sampling multiple binding modes in proteins and scoring each mode, with the lowest-energy (or highest scoring) binding mode being regarded as a near-native complex. However, high-scoring modes often match poorly with the true bound form, suggesting a need for improvement of the scoring function. In this study, we propose a scoring function, KFC-E, that accounts for both conservation and coevolution of putative binding hotspot residues at protein-protein interfaces. We tested KFC-E on four benchmark sets of unbound examples and two benchmark sets of bound examples, with the results demonstrating a clear improvement over scores that examine conservation and coevolution across the entire interface.


Sujet(s)
Protéines , Liaison aux protéines , Conformation des protéines , Protéines/métabolisme
19.
J Phys Chem Lett ; 12(23): 5494-5502, 2021 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-34086459

RÉSUMÉ

SARS-CoV and SARS-CoV-2 bind to the human ACE2 receptor in practically identical conformations, although several residues of the receptor-binding domain (RBD) differ between them. Herein, we have used molecular dynamics (MD) simulations, machine learning (ML), and free-energy perturbation (FEP) calculations to elucidate the differences in binding by the two viruses. Although only subtle differences were observed from the initial MD simulations of the two RBD-ACE2 complexes, ML identified the individual residues with the most distinctive ACE2 interactions, many of which have been highlighted in previous experimental studies. FEP calculations quantified the corresponding differences in binding free energies to ACE2, and examination of MD trajectories provided structural explanations for these differences. Lastly, the energetics of emerging SARS-CoV-2 mutations were studied, showing that the affinity of the RBD for ACE2 is increased by N501Y and E484K mutations but is slightly decreased by K417N.


Sujet(s)
Angiotensin-converting enzyme 2/composition chimique , Angiotensin-converting enzyme 2/métabolisme , Apprentissage machine , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/métabolisme , Sites de fixation , Humains , Modèles moléculaires , Simulation de dynamique moléculaire
20.
J Phys Chem A ; 125(24): 5397-5405, 2021 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-34114820

RÉSUMÉ

Mercury (Hg) pollution is a global environmental problem. The abiotic formation of dimethylmercury (DMeHg) from monomethylmercury (MMeHg) may account for a large portion of DMeHg in oceans. Previous experimental work has shown that abiotic formation of DMeHg from MMeHg can be facilitated by reduced sulfur groups on sulfide mineral surfaces. In that work, a mechanism was proposed in which neighboring MMeHg moieties bound to sulfide sites on a mineral surface react through an SN2-type mechanism to form DMeHg and incorporate the remaining Hg atoms into the mineral surface. Here, we perform density functional theory calculations to explore the mechanisms of DMeHg formation on the 110 surface of a CdS(s) (hawleyite) nanoparticle. We show that coordination of MMeHg substituents to adjacent reduced sulfur groups protruding from the surface indeed facilitates DMeHg formation and that the reaction proceeds through direct transmethylation from one MMeHg substituent to another. Coordination of Hg by multiple S atoms provides a transition-state stabilization and activates a C-Hg bond for methyl transfer. In addition, solvation effects play an important role in the surface reconstruction of the nanoparticle and in decreasing the energetic barrier for DMeHg formation relative to the corresponding reaction in vacuo.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...