Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 110
Filtrer
1.
NPJ Vaccines ; 9(1): 123, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38956057

RÉSUMÉ

The Mycobacterial growth inhibition assay (MGIA) is an ex-vivo assay used to measure the overall functional immune response elicited by infection or vaccination. In tuberculosis (TB) vaccine development, MGIA is a potentially important tool for preclinical evaluation of early-stage vaccine candidates to complement existing assays, and to potentially reduce the need for lengthy and costly pathogenic Mycobacterium tuberculosis (Mtb) animal challenge experiments. The conventional method of MGIA in mice entails directly infecting mixed cell cultures, most commonly splenocytes, from immunised mice with mycobacteria. However, this direct infection of mixed cell populations may yield unreliable results and lacks sufficient sensitivity to discriminate well between different vaccines due to the low number of mycobacteria-permissive cells. Here, we modified the assay by inclusion of mycobacteria-infected congenic murine macrophage cell lines as the target cells, and by measuring the total number of killed cells rather than the relative reduction between different groups. Thus, using splenocytes from Mycobacterium bovis BCG immunised mice, and J774 and MH-S (BALB/c background) or BL/6-M (C57Bl/6 background) macrophage cell lines, we demonstrated that the modified assay resulted in at least 26-fold greater mycobacterial killing per set quantity of splenocytes as compared to the conventional method. This increased sensitivity of measuring mycobacterial killing was confirmed using both the standard culture forming unit (CFU) assay and luminescence readings of luciferase-tagged virulent and avirulent mycobacteria. We propose that the modified MGIA can be used as a highly calibrated tool for quantitating the killing capacity of immune cells in preclinical evaluation of vaccine candidates for TB.

2.
Plant Biotechnol J ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39016470

RÉSUMÉ

For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 µg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.

3.
J Plant Physiol ; 294: 154188, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38295650

RÉSUMÉ

Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.


Sujet(s)
Saccharose , Oses phosphates , Humains , Saccharose/métabolisme , Glycémie , Oses phosphates/métabolisme , Plantes/métabolisme , Photosynthèse , Tréhalose , Homéostasie
4.
Front Immunol ; 14: 1306449, 2023.
Article de Anglais | MEDLINE | ID: mdl-38130713

RÉSUMÉ

Tuberculosis (TB) is a major global health threat that claims more than one million lives annually. With a quarter of the global population harbouring latent TB, post-exposure vaccination aimed at high-risk populations that could develop active TB disease would be of great public health benefit. Mucosal vaccination is an attractive approach for a predominantly lung disease like TB because it elicits both local and systemic immunity. However, the immunological consequence of mucosal immunisation in the presence of existing lung immunity remains largely unexplored. Using a mycobacterial pre-exposure mouse model, we assessed whether pre-existing mucosal and systemic immune responses can be boosted and/or qualitatively altered by intranasal administration of spore- and nanoparticle-based subunit vaccines. Analysis of lung T cell responses revealed an increasing trend in the frequency of important CD4 and CD8 T cell subsets, and T effector memory cells with a Th1 cytokine (IFNγ and TNFα) signature among immunised mice. Additionally, significantly greater antigen specific Th1, Th17 and IL-10 responses, and antigen-induced T cell proliferation were seen from the spleens of immunised mice. Measurement of antigen-specific IgG and IgA from blood and bronchoalveolar lavage fluid also revealed enhanced systemic and local humoral immune responses among immunised animals. Lastly, peripheral blood mononuclear cells (PBMCs) obtained from the TB-endemic country of Mozambique show that individuals with LTBI showed significantly greater CD4 T cell reactivity to the vaccine candidate as compared to healthy controls. These results support further testing of Spore-FP1 and Nano-FP1 as post-exposure TB vaccines.


Sujet(s)
Nanoparticules , Tuberculose , Animaux , Souris , Administration par voie nasale , Agranulocytes , Poumon , Spores , Vaccins sous-unitaires , Immunité
5.
Front Immunol ; 14: 1246826, 2023.
Article de Anglais | MEDLINE | ID: mdl-37881438

RÉSUMÉ

Tuberculosis remains a major health threat globally and a more effective vaccine than the current Bacillus Calmette Guerin (BCG) is required, either to replace or boost it. The Spore-FP1 mucosal vaccine candidate is based on the fusion protein of Ag85B-Acr-HBHA/heparin-binding domain, adsorbed on the surface of inactivated Bacillus subtilis spores. The candidate conferred significant protection against Mycobacterium. tuberculosis challenge in naïve guinea pigs and markedly improved protection in the lungs and spleens of animals primed with BCG. We then immunized rhesus macaques with BCG intradermally, and subsequently boosted with one intradermal and one aerosol dose of Spore-FP1, prior to challenge with low dose aerosolized M. tuberculosis Erdman strain. Following vaccination, animals did not show any adverse reactions and displayed higher antigen specific cellular and antibody immune responses compared to BCG alone but this did not translate into significant improvement in disease pathology or bacterial burden in the organs.


Sujet(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vaccins antituberculeux , Tuberculose , Cochons d'Inde , Animaux , Vaccin BCG , Macaca mulatta , Antigènes bactériens , Tuberculose/prévention et contrôle , Spores
6.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Article de Anglais | MEDLINE | ID: mdl-37748053

RÉSUMÉ

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Sujet(s)
Protéines d'Arabidopsis , Arabidopsis , Oses phosphates , Arabidopsis/génétique , Tréhalose , Acides indolacétiques , Protein-Serine-Threonine Kinases/génétique , Protéines d'Arabidopsis/génétique
7.
Biochem J ; 480(16): 1365-1377, 2023 08 30.
Article de Anglais | MEDLINE | ID: mdl-37589484

RÉSUMÉ

High temperatures in the field hinder bread wheat high-yield production, mainly because of the adverse effects of heat over photosynthesis. The Yaqui Valley, the main wheat producer region in Mexico, is a zone prone to have temperatures over 30°C. The aim of this work was to test the flag leaf photosynthetic performance in 10 bread wheat genotypes grown under high temperatures in the field. The study took place during two seasons (2019-2020 and 2020-2021). In each season, control seeds were sown in December, while heat-stressed were sown in late January to subject wheat to heat stress (HS) during the grain-filling stage. HS reduced Grain yield from 20 to 58% in the first season. HS did not reduce chlorophyll content and light-dependent reactions were unaffected in any of the tested genotypes. Rubisco, chloroplast fructose 1,6-biphosphatase (FBPase), and sucrose phosphate synthase (SPS) activities were measured spectrophotometrically. Rubisco activity did not decrease under HS in any of the genotypes. FBPase activity was reduced by HS indicating that triose phosphate flux to starch synthesis was reduced, while SPS was not affected, and thus, sucrose synthesis was maintained. HS reduced aerial biomass in the 10 chosen genotypes. Genotypes SOKWB.1, SOKWB.3, and BORLAUG100 maintained their yield under HS, pointing to a potential success in their introduction in this region for breeding heat-tolerant bread wheat.


Sujet(s)
Ribulose bisphosphate carboxylase , Triticum , Triticum/génétique , Température , Phosphates , Trioses
8.
Toxicon ; 232: 107225, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37442299

RÉSUMÉ

Current snakebite antivenoms are based on polyclonal animal-derived antibodies, which can neutralize snake venom toxins in envenomed victims, but which are also associated with adverse reactions. Therefore, several efforts within antivenom research aim to explore the utility of recombinant monoclonal antibodies, such as human immunoglobulin G (IgG) antibodies, which are routinely used in the clinic for other indications. In this study, the feasibility of using tobacco plants as bioreactors for expressing full-length human monoclonal IgG antibodies against snake toxins was investigated. We show that the plant-produced antibodies perform similarly to their mammalian cell-expressed equivalents in terms of in vitro antigen binding. Complete neutralization was achieved by both the plant and mammalian cell-produced anti-α-cobratoxin antibody. The feasibility of using plant-based expression systems may potentially make it easier for laboratories in resource-poor settings to work with human monoclonal IgG antibodies.


Sujet(s)
Nicotiana , Morsures de serpent , Animaux , Humains , Venins de serpent , Sérums antivenimeux , Anticorps monoclonaux , Immunoglobuline G , Mammifères
9.
Front Plant Sci ; 14: 1168985, 2023.
Article de Anglais | MEDLINE | ID: mdl-37223794

RÉSUMÉ

Ustiloxins are the main mycotoxin in rice false smut, a devastating disease caused by Ustilaginoidea virens. A typical phytotoxicity of ustiloxins is strong inhibition of seed germination, but the physiological mechanism is not clear. Here, we show that the inhibition of rice germination by ustiloxin A (UA) is dose-dependent. The sugar availability in UA-treated embryo was lower while the starch residue in endosperm was higher. The transcripts and metabolites responsive to typical UA treatment were investigated. The expression of several SWEET genes responsible for sugar transport in embryo was down-regulated by UA. Glycolysis and pentose phosphate processes in embryo were transcriptionally repressed. Most of the amino acids detected in endosperm and embryo were variously decreased. Ribosomal RNAs for growth were inhibited while the secondary metabolite salicylic acid was also decreased under UA. Hence, we propose that the inhibition of seed germination by UA involves the block of sugar transport from endosperm to embryo, leading to altered carbon metabolism and amino acid utilization in rice plants. Our analysis provides a framework for understanding of the molecular mechanisms of ustiloxins on rice growth and in pathogen infection.

10.
Food Energy Secur ; 12(1): e435, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-37035025

RÉSUMÉ

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.

11.
bioRxiv ; 2023 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-36711625

RÉSUMÉ

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons towards the prefrontal cortex and shape behaviour. We demonstrate in mice ( Mus musculus ) that dopamine axons reach the cortex through a transient gradient of Netrin-1 expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus ) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

12.
Physiol Behav ; 262: 114093, 2023 04 01.
Article de Anglais | MEDLINE | ID: mdl-36706972

RÉSUMÉ

Eating and drinking co-occur and many of the same mechanisms that control one are involved in the control of the other, making it difficult to isolate specific mechanisms for the control of fluid intake. Glucagon-like peptide-1 (GLP-1) is a peptide that seems to be involved in the endogenous control of both ingestive behaviors, but we lack a thorough understanding of how and where GLP-1 is acting to control fluid intake. Vasopressin-deficient Brattleboro rats are a model of hereditary hypothalamic diabetes insipidus that have been used extensively for the study of vasopressin actions in behavior and physiology. Here, we propose that these rats, that eat normally but drink excessively, provide a useful model to dissociate central controls of food and fluid intakes. As an initial step toward establishing this model for these purposes, we focused on GLP-1. Similar to the effect observed after treatment with a GLP-1 receptor (GLP-1R) agonist, the intake difference between wildtype and Brattleboro rats was largely a function in the number of licking bursts, indicating differences in post-ingestive feedback (e.g., satiation). When given central injections of a GLP-1R agonist, the effect on feeding was comparable between wildtype and Brattleboro rats, but the effect of drug on fluid intake was markedly exaggerated in Brattleboro rats. Additionally, Brattleboro rats did not respond to GLP-1R antagonism, whereas wildtype rats did. Taken together, these results suggest that Brattleboro rats exhibit a selective disruption to GLP-1's control of water intake. Overall, these experiments provide foundational studies of the ingestive behavior of Brattleboro rats and demonstrate the potential to use these rats to disentangle the effects of GLP-1 on food and fluid intakes.


Sujet(s)
Comportement alimentaire , Glucagon-like peptide 1 , Rats , Animaux , Glucagon-like peptide 1/pharmacologie , Rat Brattleboro , Comportement alimentaire/physiologie , Consommation alimentaire/physiologie , Vasopressines/pharmacologie , Récepteur du peptide-1 similaire au glucagon/génétique
13.
Front Plant Sci ; 13: 886541, 2022.
Article de Anglais | MEDLINE | ID: mdl-35651779

RÉSUMÉ

Rising temperatures due to climate change threaten agricultural crop productivity. As a cool-season crop, wheat is heat-sensitive, but often exposed to high temperatures during the cultivation period. In the current study, a bread wheat panel of spring wheat genotypes, including putatively heat-tolerant Australian and CIMMYT genotypes, was exposed to a 5-day mild (34°C/28°C, day/night) or extreme (37°C/27°C) heat stress during the sensitive pollen developmental stage. Worsening effects on anther morphology were observed, as heat stress increased from mild to extreme. Even under mild heat, a significant decrease in pollen viability and number of grains per spike from primary spike was observed compared with the control (21°C/15°C), with Sunstar and two CIMMYT breeding lines performing well. A heat-specific positive correlation between the two traits indicates the important role of pollen fertility for grain setting. Interestingly, both mild and extreme heat induced development of new tillers after the heat stress, providing an alternative sink for accumulated photosynthates and significantly contributing to the final yield. Measurements of flag leaf maximum potential quantum efficiency of photosystem II (Fv/Fm) showed an initial inhibition after the heat treatment, followed by a full recovery within a few days. Despite this, model fitting using chlorophyll soil plant analysis development (SPAD) measurements showed an earlier onset or faster senescence rate under heat stress. The data presented here provide interesting entry points for further research into pollen fertility, tillering dynamics, and leaf senescence under heat. The identified heat-tolerant wheat genotypes can be used to dissect the underlying mechanisms and breed climate-resilient wheat.

15.
Eur J Neurosci ; 54(11): 7790-7804, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34750934

RÉSUMÉ

Social isolation during the juvenile and adolescent stages (peri-adolescent social isolation) can have long-term consequences for behavioural and neural development. Most of this research, however, has relied on data from males, and very few studies have included both sexes. The present study investigated the impact of peri-adolescent social isolation on social preference, anxiety-like behaviour, and vasopressin neural circuitry of male and female Long Evans rats. Rats were either housed alone for 3 weeks beginning at weaning (Isolated) or in groups (Group-housed). In adulthood, rats were tested in social preference, open field, marble burying, and light/dark box tests, and brains were processed for vasopressin immunohistochemistry. Isolated males exhibited a lower social preference score and spent more time in the light zone of the light/dark box than their group-housed counterparts. Isolated and Group-housed females did not differ in these measures. Peri-adolescent social isolation did not alter vasopressin fibre density in target areas known to influence social and anxiety-like behaviours (the lateral septum or lateral habenula), but increased fibre density in an output pathway of the circadian pacemaker (projections to the paraventricular nucleus of the thalamus); an effect detected across both sexes. A previously unreported sex difference was also detected for vasopressin fibre density in the paraventricular nucleus of the thalamus (females > males). These findings demonstrate long-term consequences of peri-adolescent social isolation on social preference, anxiety-like behaviour, and the circadian vasopressin pathway and suggest that socio-affective development of males is more vulnerable to social stressors during the juvenile and adolescent stages.


Sujet(s)
Anxiété , Isolement social , Animaux , Femelle , Mâle , Rats , Rat Long-Evans , Troubles du comportement social , Vasopressines
16.
Food Energy Secur ; 10(3): e292, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34594548

RÉSUMÉ

Trehalose 6-phosphate (T6P) signalling regulates carbon use and allocation and is a target to improve crop yields. However, the specific contributions of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source- and sink-related traits remain largely unknown. We used enrichment capture sequencing on TPS and TPP genes to estimate and partition the genetic variation of yield-related traits in a spring wheat (Triticum aestivum) breeding panel specifically built to capture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phenotypes were correlated to variation in TPS and TPP genes including plant height and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) which showed indications of both positive and negative gene selection. Individual genes explained proportions of heritability for biomass and grain-related traits. Three TPS1 homologues were particularly significant for trait variation. Epistatic interactions were found within and between the TPS and TPP gene families for both plant height and grain-related traits. Gene-based prediction improved predictive ability for grain weight when gene effects were combined with the whole-genome markers. Our study has generated a wealth of information on natural variation of TPS and TPP genes related to yield potential which confirms the role for T6P in resource allocation and in affecting traits such as grain number and size confirming other studies which now opens up the possibility of harnessing natural genetic variation more widely to better understand the contribution of native genes to yield traits for incorporation into breeding programmes.

17.
18.
J Plant Physiol ; 266: 153537, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34619557

RÉSUMÉ

Sucrose utilisation for the synthesis of cellular components involved in growth and development and the accumulation of biomass determines diversity in the plant kingdom; sucrose utilisation and partitioning also underpin crop yields. As a complex process the use of sucrose for the partitioning of plant products for yield is decided by the interaction of several regulatory hubs and the integration of metabolism and development. Understanding the regulation of assimilate partitioning has been a grand challenge in plant and crop science. There are emerging examples of genes and processes that appear important for assimilate partitioning that underpin yield in crops and which are amenable to intervention. Enzymes of carbon metabolism were some of the first targets in attempts to modify assimilate partitioning at the beginning (source) and end (sink) of the whole plant assimilate partitioning process. Metabolic enzymes are subject to regulatory and homeostatic mechanisms, a key factor to consider in modifying assimilate partitioning. Trehalose 6-phosphate, as a sucrose signal, may represent a special case in its ability to regulate and coordinate source and sink processes. This review summarises recent progress in understanding the underlying regulators of assimilate partitioning and the current and potentially most promising routes to crop yield enhancement with a main focus on cereals. A framework for how source-sink may regulate whole plant assimilate partitioning involving a few key elements and the central importance of reproductive development is presented.


Sujet(s)
Carbone/métabolisme , Produits agricoles , Produits agricoles/croissance et développement , Grains comestibles/croissance et développement , Amélioration des plantes , Saccharose
19.
J Pers ; 89(5): 1095-1107, 2021 10.
Article de Anglais | MEDLINE | ID: mdl-33835492

RÉSUMÉ

OBJECTIVES: Agentic (status/independence) and communal (acceptance/connectedness) social goals are thought to shape how adolescents transact with their social environments. Despite their theoretical importance, little work has focused on the development of these higher order personality dimensions. Informed by developmental neuroscience and evolutionary psychology theoretical frameworks, the current study examined associations between pubertal status, a person's level of pubertal development at a single point in time, and agentic and communal social goals across early to middle adolescence. METHODS: This longitudinal study consisted of 387 (55% female) adolescents (Wave 1 M age = 12.1) who were assessed annually across three waves. Hierarchical linear modeling was used to examine growth in pubertal status and agentic and communal goals and to distinguish between- and within-person associations between pubertal status and social goals. RESULTS: Within-person pubertal status was concurrently associated with higher levels of agentic and communal goals. In the cross-sectional and longitudinal models, between-person pubertal status was associated with higher levels of agentic social goals. No support was found for social goals prospectively predicting pubertal status. CONCLUSIONS: These findings provide support for the hypothesis that puberty, in part, may drive developmental shifts in the value adolescents place on close peer relationships and obtaining status and independence.


Sujet(s)
Objectifs , Relations interpersonnelles , Adolescent , Enfant , Études transversales , Femelle , Humains , Études longitudinales , Mâle , Groupe de pairs
20.
Front Immunol ; 11: 582833, 2020.
Article de Anglais | MEDLINE | ID: mdl-33193394

RÉSUMÉ

New evidence has been emerging that antibodies can be protective in various experimental models of tuberculosis. Here, we report on protection against multidrug-resistant Mycobacterium tuberculosis (MDR-TB) infection using a combination of the human monoclonal IgA 2E9 antibody against the alpha-crystallin (Acr, HspX) antigen and mouse interferon-gamma in mice transgenic for the human IgA receptor, CD89. The effect of the combined mucosal IgA and IFN-γ; treatment was strongest (50-fold reduction) when therapy was applied at the time of infection, but a statistically significant reduction of lung bacterial load was observed even when the therapy was initiated once the infection had already been established. The protection involving enhanced phagocytosis and then neutrophil mediated killing of infected cells was IgA isotype mediated, because treatment with an IgG version of 2E9 antibody was not effective in human IgG receptor CD64 transgenic mice. The Acr antigen specificity of IgA antibodies for protection in humans has been indicated by their elevated serum levels in latent tuberculosis unlike the lack of IgA antibodies against the virulence-associated MPT64 antigen. Our results represent the first evidence for potential translation of mucosal immunotherapy for the management of MDR-TB.


Sujet(s)
Interféron gamma/usage thérapeutique , Poumon/immunologie , Mycobacterium tuberculosis/physiologie , Granulocytes neutrophiles/immunologie , Muqueuse respiratoire/immunologie , Tuberculose/thérapie , Animaux , Anticorps monoclonaux/métabolisme , Antigènes bactériens/immunologie , Antigènes CD/génétique , Antigènes CD/métabolisme , Charge bactérienne , Protéines bactériennes/immunologie , Multirésistance aux médicaments , Humains , Immunoglobuline A/métabolisme , Poumon/microbiologie , Souris , Souris transgéniques , Mycobacterium tuberculosis/pathogénicité , Phagocytose , Récepteur Fc/génétique , Récepteur Fc/métabolisme , Récepteurs du fragment Fc des IgG/génétique , Cellules THP-1 , Cellules U937 , Cristallines alpha/immunologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...