Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pathol Res Pract ; 248: 154727, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37517168

RÉSUMÉ

The aim of this study was to determine the advantages and limitations of two commonly used sampling techniques, i.e., punching tissue block (PTB) and laser capture microdissection (LCM) when investigating tumor cell-derived gene expression patterns at the invasive front of colorectal cancer (CRC). We obtained samples from 20 surgically removed CRCs at locations crucial for tumor progression, i.e., the central part, the expansive front and the infiltrative front exhibiting tumor budding (TB), using both sampling techniques. At each location, we separately analyzed the expressions of miR-200 family (miR-141, miR-200a, miR-200b, miR-200c and miR-429), known as reliable markers of epithelial-mesenchymal transition (EMT). We found significant downregulation of all members of miR-200 family at the infiltrative front in comparison to the central part regardless of the used sampling technique. However, when comparing miR-200 expression between the expansive and the infiltrative front, we found significant downregulation of all tested miR-200 at the infiltrative front only in samples obtained by LCM. Our results suggest that, PTB is an adequate technique for studying the differences in tumor gene expression between the central part and the invasive front of CRC, but is insufficient to analyze and compare morphologically distinct patterns along the invasive front including TB. For this purpose, the use of LCM is essential.


Sujet(s)
Tumeurs du côlon , Tumeurs colorectales , microARN , Humains , microARN/métabolisme , Microdissection au laser , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Tumeurs du côlon/anatomopathologie , Régulation négative , Transition épithélio-mésenchymateuse/génétique , Régulation de l'expression des gènes tumoraux
2.
J Pathol ; 258(3): 278-288, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-36062412

RÉSUMÉ

Morphological features including infiltrative growth, tumour budding (TB), and poorly differentiated clusters (PDCs) have a firmly established negative predictive value in colorectal cancer (CRC). Despite extensive research, the mechanisms underlying different tumour growth patterns remain poorly understood. The aim of this study was to investigate the involvement of epithelial-mesenchymal transition (EMT) in TB and PDCs in CRC. Using laser-capture microdissection, we obtained distinct parts of the primary CRC including TB, PDCs, expansive tumour front, and the central part of the tumour, and analysed the expression of EMT-related markers, i.e. the miR-200 family, ZEB1/2, RND3, and CDH1. In TB, the miR-200 family and CDH1 were significantly downregulated, while ZEB2 was significantly upregulated. In PDCs, miR-141, miR-200c, and CDH1 were significantly downregulated. No significant differences were observed in the expression of any EMT-related markers between the expansive tumour front and the central part of the tumour. Our results suggest that both TB and PDCs are related to partial EMT. Discrete differences in morphology and expression of EMT-related markers between TB and PDCs indicate that they represent different manifestations of partial EMT. TB seems to be closer to complete EMT than PDCs. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Sujet(s)
Tumeurs du côlon , Tumeurs colorectales , microARN , Lignée cellulaire tumorale , Tumeurs du côlon/génétique , Tumeurs colorectales/anatomopathologie , Transition épithélio-mésenchymateuse , Régulation de l'expression des gènes tumoraux , Humains , microARN/génétique , microARN/métabolisme , Royaume-Uni
3.
Cancers (Basel) ; 14(9)2022 May 03.
Article de Anglais | MEDLINE | ID: mdl-35565409

RÉSUMÉ

Epithelial-mesenchymal transition (EMT) plays a pivotal role in carcinogenesis, influencing cancer progression, metastases, stemness, immune evasion, metabolic reprogramming and therapeutic resistance. EMT in most carcinomas, including colorectal carcinoma (CRC), is only partial, and can be evidenced by identification of the underlying molecular drivers and their regulatory molecules. During EMT, cellular reprogramming is orchestrated by core EMT transcription factors (EMT-TFs), namely ZEB1/2, TWIST1/2, SNAI1 (SNAIL) and SNAI2 (SLUG). While microRNAs have been clearly defined as regulators of EMT, the role of long non-coding RNAs (lncRNAs) in EMT is poorly defined and controversial. Determining the role of lncRNAs in EMT remains a challenge, because they are involved in a number of cellular pathways and are operating through various mechanisms. Adding to the complexity, some lncRNAs have controversial functions across different tumor types, acting as EMT promotors in some tumors and as EMT suppressors in others. The aim of this review is to summarize the role of lncRNAs involved in the regulation of EMT-TFs in human CRC. Additional candidate lncRNAs were identified through a bioinformatics analysis.

4.
Front Oncol ; 11: 662806, 2021.
Article de Anglais | MEDLINE | ID: mdl-34046357

RÉSUMÉ

There is emerging evidence suggesting that epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) play an important role in colorectal carcinoma (CRC), but their exact role remains controversial. Our aim was to analyze the miR-200 family as EMT markers and their target genes expression at invasive tumor front and in nodal and liver metastases. Sixty-three formalin-fixed paraffin-embedded tissue samples from 19 patients with CRC were included. Using a micropuncture technique, tissue was obtained from central part and invasive front of the primary tumor, and nodal and liver metastases. Expression of the miR-200 family and their target genes CDKN1B, ONECUT2, PTPN13, RND3, SOX2, TGFB2 and ZEB2 was analyzed using real-time PCR. We found miR-200 family down-regulation at invasive front compared to central part, and up-regulation of miRNA-200a/b/c and miR-429 in metastases compared to invasive front. At invasive front, TGFB2 was the only gene with inverse expression to the miR-200 family, whereas in metastases inverse expression was found for ONECUT2 and SOX2. CDKN1B, PTPN13 and ZEB2 were down-regulated at invasive front and up-regulated in metastases. Our results suggest the involvement of partial EMT at invasive tumor front, and partial MET in metastases in CRC, based on miR-200 family and its target genes expression.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE