Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 145
Filtrer
1.
FEBS Lett ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38977941

RÉSUMÉ

Mutually exclusive loss-of-function alterations in gene pairs are those that occur together less frequently than may be expected and may denote a synthetically lethal relationship (SSL) between the genes. SSLs can be exploited therapeutically to selectively kill cancer cells. Here, we analysed mutation, copy number variation, and methylation levels in samples from The Cancer Genome Atlas, using the hypergeometric and the Poisson binomial tests to identify mutually exclusive inactivated genes. We focused on gene pairs where one is an inactivated tumour suppressor and the other a gene whose protein product can be inhibited by known drugs. This provided an abundance of potential targeted therapeutics and repositioning opportunities for several cancers. These data are available on the MexDrugs website, https://bioinformaticslab.sussex.ac.uk/mexdrugs.

2.
Nat Commun ; 15(1): 1797, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38413589

RÉSUMÉ

Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polε) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polε subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.


Sujet(s)
Réplication de l'ADN , Protéines de liaison à l'ADN , Animaux , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , DNA polymerase II/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Protéines de maintenance des minichromosomes/métabolisme , Réplication virale
3.
Nat Commun ; 13(1): 7062, 2022 11 18.
Article de Anglais | MEDLINE | ID: mdl-36400800

RÉSUMÉ

Detection of cytosolic DNA is a central element of the innate immunity system against viral infection. The Ku heterodimer, a component of the NHEJ pathway of DNA repair in the nucleus, functions as DNA sensor that detects dsDNA of viruses that replicate in the cytoplasm. Vaccinia virus expresses two proteins, C4 and C16, that inactivate DNA sensing and enhance virulence. The structural basis for this is unknown. Here we determine the structure of the C16 - Ku complex using cryoEM. Ku binds dsDNA by a preformed ring but C16 sterically blocks this access route, abrogating binding to a dsDNA end and its insertion into DNA-PK, thereby averting signalling into the downstream innate immunity system. C4 replicates these activities using a domain with 54% identity to C16. Our results reveal how vaccinia virus subverts the capacity of Ku to recognize viral DNA.


Sujet(s)
Protéines de liaison à l'ADN , Virus de la vaccine , Virus de la vaccine/génétique , Protéines de liaison à l'ADN/métabolisme , Autoantigène Ku/métabolisme , ADN/métabolisme , DNA-activated protein kinase/métabolisme
4.
Nat Commun ; 13(1): 7343, 2022 11 29.
Article de Anglais | MEDLINE | ID: mdl-36446791

RÉSUMÉ

Activation of client protein kinases by the HSP90 molecular chaperone system is affected by phosphorylation at multiple sites on HSP90, the kinase-specific co-chaperone CDC37, and the kinase client itself. Removal of regulatory phosphorylation from client kinases and their release from the HSP90-CDC37 system depends on the Ser/Thr phosphatase PP5, which associates with HSP90 via its N-terminal TPR domain. Here, we present the cryoEM structure of the oncogenic protein kinase client BRAFV600E bound to HSP90-CDC37, showing how the V600E mutation favours BRAF association with HSP90-CDC37. Structures of HSP90-CDC37-BRAFV600E complexes with PP5 in autoinhibited and activated conformations, together with proteomic analysis of its phosphatase activity on BRAFV600E and CRAF, reveal how PP5 is activated by recruitment to HSP90 complexes. PP5 comprehensively dephosphorylates client proteins, removing interaction sites for regulatory partners such as 14-3-3 proteins and thus performing a 'factory reset' of the kinase prior to release.


Sujet(s)
Protéines du choc thermique HSP90 , Humains , Protéines du cycle cellulaire/génétique , Chaperonines/génétique , Protéines du choc thermique HSP90/génétique , Chaperons moléculaires , Phosphoric monoester hydrolases , Protéomique , Protéines proto-oncogènes B-raf
5.
Nucleic Acids Res ; 50(14): 8279-8289, 2022 08 12.
Article de Anglais | MEDLINE | ID: mdl-35819203

RÉSUMÉ

The RAD9-RAD1-HUS1 (9-1-1) clamp forms one half of the DNA damage checkpoint system that signals the presence of substantial regions of single-stranded DNA arising from replication fork collapse or resection of DNA double strand breaks. Loaded at the 5'-recessed end of a dsDNA-ssDNA junction by the RAD17-RFC clamp loader complex, the phosphorylated C-terminal tail of the RAD9 subunit of 9-1-1 engages with the mediator scaffold TOPBP1 which in turn activates the ATR kinase, localised through the interaction of its constitutive partner ATRIP with RPA-coated ssDNA. Using cryogenic electron microscopy (cryoEM) we have determined the structure of a complex of the human RAD17-RFC clamp loader bound to human 9-1-1, engaged with a dsDNA-ssDNA junction. The structure answers the key questions of how RAD17 confers specificity for 9-1-1 over PCNA, and how the clamp loader specifically recognises the recessed 5' DNA end and fixes the orientation of 9-1-1 on the ssDNA.


Sujet(s)
Protéines du cycle cellulaire , ADN simple brin , Protéines du cycle cellulaire/métabolisme , ADN/composition chimique , Altération de l'ADN , ADN simple brin/génétique , Humains , Protéine C de réplication/métabolisme
6.
DNA Repair (Amst) ; 108: 103232, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34678589

RÉSUMÉ

The cellular response to DNA damage (DDR) that causes replication collapse and/or DNA double strand breaks, is characterised by a massive change in the post-translational modifications (PTM) of hundreds of proteins involved in the detection and repair of DNA damage, and the communication of the state of damage to the cellular systems that regulate replication and cell division. A substantial proportion of these PTMs involve targeted phosphorylation, which among other effects, promotes the formation of multiprotein complexes through the specific binding of phosphorylated motifs on one protein, by specialised domains on other proteins. Understanding the nature of these phosphorylation mediated interactions allows definition of the pathways and networks that coordinate the DDR, and helps identify new targets for therapeutic intervention that may be of benefit in the treatment of cancer, where DDR plays a key role. In this review we summarise the present understanding of how phosphorylated motifs are recognised by BRCT domains, which occur in many DDR proteins. We particularly focus on TOPBP1 - a multi-BRCT domain scaffold protein with essential roles in replication and the repair and signalling of DNA damage.


Sujet(s)
Protéines de liaison à l'ADN , Protéines nucléaires , Protéines de transport/métabolisme , Protéines du cycle cellulaire/métabolisme , Altération de l'ADN , Réparation de l'ADN , Protéines de liaison à l'ADN/métabolisme , Protéines nucléaires/métabolisme , Phosphorylation
7.
mBio ; 12(5): e0116321, 2021 10 26.
Article de Anglais | MEDLINE | ID: mdl-34544280

RÉSUMÉ

During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.


Sujet(s)
Protéines de transport/métabolisme , Chromatine , Protéines de liaison à l'ADN/métabolisme , Interactions hôte-pathogène/génétique , Papillomavirus humain de type 16/génétique , Mitose , Protéines nucléaires/métabolisme , Protéines des oncogènes viraux/métabolisme , Sérine/génétique , Protéines de transport/génétique , Casein Kinase II/génétique , Casein Kinase II/métabolisme , Protéines de liaison à l'ADN/génétique , Papillomavirus humain de type 16/pathogénicité , Humains , Kératinocytes/virologie , Étapes du cycle de vie , Protéines nucléaires/génétique , Protéines des oncogènes viraux/génétique , Phosphorylation , Sérine/métabolisme , Réplication virale
8.
Cell Rep ; 36(1): 109317, 2021 07 06.
Article de Anglais | MEDLINE | ID: mdl-34233195

RÉSUMÉ

The R2TP (RUVBL1-RUVBL2-RPAP3-PIH1D1) complex, in collaboration with heat shock protein 90 (HSP90), functions as a chaperone for the assembly and stability of protein complexes, including RNA polymerases, small nuclear ribonucleoprotein particles (snRNPs), and phosphatidylinositol 3-kinase (PI3K)-like kinases (PIKKs) such as TOR and SMG1. PIKK stabilization depends on an additional complex of TELO2, TTI1, and TTI2 (TTT), whose structure and function are poorly understood. The cryoelectron microscopy (cryo-EM) structure of the human R2TP-TTT complex, together with biochemical experiments, reveals the mechanism of TOR recruitment to the R2TP-TTT chaperone. The HEAT-repeat TTT complex binds the kinase domain of TOR, without blocking its activity, and delivers TOR to the R2TP chaperone. In addition, TTT regulates the R2TP chaperone by inhibiting RUVBL1-RUVBL2 ATPase activity and by modulating the conformation and interactions of the PIH1D1 and RPAP3 components of R2TP. Taken together, our results show how TTT couples the recruitment of TOR to R2TP with the regulation of this chaperone system.


Sujet(s)
Chaperons moléculaires/métabolisme , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Adenosine triphosphatases/métabolisme , Cryomicroscopie électronique , Humains , Modèles moléculaires , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/métabolisme , Liaison aux protéines , Domaines protéiques , Cartographie d'interactions entre protéines , Saccharomyces cerevisiae/ultrastructure , Protéines de Saccharomyces cerevisiae/ultrastructure , Relation structure-activité
9.
Structure ; 29(6): 531-539.e3, 2021 06 03.
Article de Anglais | MEDLINE | ID: mdl-33789090

RÉSUMÉ

CHK1 is a protein kinase that functions downstream of activated ATR to phosphorylate multiple targets as part of intra-S and G2/M DNA damage checkpoints. Its role in allowing cells to survive replicative stress has made it an important target for anti-cancer drug discovery. Activation of CHK1 by ATR depends on their mutual interaction with CLASPIN, a natively unstructured protein that interacts with CHK1 through a cluster of phosphorylation sites in its C-terminal half. We have now determined the crystal structure of the kinase domain of CHK1 bound to a high-affinity motif from CLASPIN. Our data show that CLASPIN engages a conserved site on CHK1 adjacent to the substrate-binding cleft, involved in phosphate sensing in other kinases. The CLASPIN motif is not phosphorylated by CHK1, nor does it affect phosphorylation of a CDC25 substrate peptide, suggesting that it functions purely as a scaffold for CHK1 activation by ATR.


Sujet(s)
Protéines adaptatrices de la transduction du signal/composition chimique , Protéines adaptatrices de la transduction du signal/métabolisme , Checkpoint kinase 1/composition chimique , Checkpoint kinase 1/métabolisme , Animaux , Sites de fixation , Checkpoint kinase 1/génétique , Cristallographie aux rayons X , Humains , Modèles moléculaires , Mutation , Phosphorylation , Liaison aux protéines , Conformation des protéines , Domaines protéiques , Cellules Sf9
10.
Elife ; 102021 03 01.
Article de Anglais | MEDLINE | ID: mdl-33647232

RÉSUMÉ

BLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response; however, selective small molecule inhibitors of defined mechanism are currently lacking. Here, we identify and characterise a specific inhibitor of BLM's ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.


Sujet(s)
RecQ helicases/antagonistes et inhibiteurs , Bibliothèques de petites molécules/composition chimique , Bibliothèques de petites molécules/pharmacologie , ADN/métabolisme , ADN cruciforme , ADN simple brin , Découverte de médicament , Antienzymes/composition chimique , Antienzymes/pharmacologie , Escherichia coli , Tests de criblage à haut débit , Humains , RecQ helicases/métabolisme
11.
Sci Adv ; 6(46)2020 11.
Article de Anglais | MEDLINE | ID: mdl-33188023

RÉSUMÉ

Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.

12.
Sci Rep ; 10(1): 16000, 2020 09 29.
Article de Anglais | MEDLINE | ID: mdl-32994435

RÉSUMÉ

Heat shock protein 90 (Hsp90) is a molecular chaperone that plays an important role in tumour biology by promoting the stabilisation and activity of oncogenic 'client' proteins. Inhibition of Hsp90 by small-molecule drugs, acting via its ATP hydrolysis site, has shown promise as a molecularly targeted cancer therapy. Owing to the importance of Hop and other tetratricopeptide repeat (TPR)-containing cochaperones in regulating Hsp90 activity, the Hsp90-TPR domain interface is an alternative site for inhibitors, which could result in effects distinct from ATP site binders. The TPR binding site of Hsp90 cochaperones includes a shallow, positively charged groove that poses a significant challenge for druggability. Herein, we report the apo, solution-state structure of Hop TPR2A which enables this target for NMR-based screening approaches. We have designed prototype TPR ligands that mimic key native 'carboxylate clamp' interactions between Hsp90 and its TPR cochaperones and show that they block binding between Hop TPR2A and the Hsp90 C-terminal MEEVD peptide. We confirm direct TPR-binding of these ligands by mapping 1H-15N HSQC chemical shift perturbations to our new NMR structure. Our work provides a novel structure, a thorough assessment of druggability and robust screening approaches that may offer a potential route, albeit difficult, to address the chemically challenging nature of the Hop TPR2A target, with relevance to other TPR domain interactors.


Sujet(s)
Protéines du choc thermique/composition chimique , Protéines du choc thermique/métabolisme , Bibliothèques de petites molécules/pharmacologie , Domaine catalytique , Simulation numérique , Humains , Ligands , Modèles moléculaires , Résonance magnétique nucléaire biomoléculaire , Liaison aux protéines , Conformation des protéines , Domaines protéiques , Bibliothèques de petites molécules/composition chimique
13.
J Chem Inf Model ; 60(5): 2541-2551, 2020 05 26.
Article de Anglais | MEDLINE | ID: mdl-32175735

RÉSUMÉ

The number of high-resolution structures of protein complexes obtained using cryo-electron microscopy (cryo-EM) is increasing rapidly. Cryo-EM maps of large macromolecular complexes frequently contain regions resolved at different resolution levels, and modeling atomic structures de novo can be difficult for domains determined at worse than 5 Å in the absence of atomic information from other structures. Here we describe the details and step-by-step decisions in the strategy we followed to model the RUVBL2-binding domain (RBD), a 14 kDa domain at the C-terminus of RNA Polymerase II associated protein 3 (RPAP3) for which atomic information was not available. Modeling was performed on a cryo-EM map at 4.0-5.5 Å resolution, integrating information from secondary structure predictions, homology modeling, restraints from cross-linked mass spectrometry, and molecular dynamics (MD) in AMBER. Here, we compare our model with the structure of RBD determined by NMR to evaluate our strategy. We also perform new MD simulations to describe important residues mediating the interaction of RBD with RUVBL2 and analyze their conservation in RBD homologous domains. Our approach and its evaluation can serve as an example to address the analysis of medium resolution regions in cryo-EM maps.


Sujet(s)
Simulation de dynamique moléculaire , Protéines , Cryomicroscopie électronique , Structures macromoléculaires , Conformation des protéines , Structure secondaire des protéines
14.
Sci Adv ; 5(5): eaaw1616, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-31049401

RÉSUMÉ

The human R2TP complex (RUVBL1-RUVBL2-RPAP3-PIH1D1) is an HSP90 co-chaperone required for the maturation of several essential multiprotein complexes, including RNA polymerase II, small nucleolar ribonucleoproteins, and PIKK complexes such as mTORC1 and ATR-ATRIP. RUVBL1-RUVBL2 AAA-ATPases are also primary components of other essential complexes such as INO80 and Tip60 remodelers. Despite recent efforts, the molecular mechanisms regulating RUVBL1-RUVBL2 in these complexes remain elusive. Here, we report cryo-EM structures of R2TP and show how access to the nucleotide-binding site of RUVBL2 is coupled to binding of the client recruitment component of R2TP (PIH1D1) to its DII domain. This interaction induces conformational rearrangements that lead to the destabilization of an N-terminal segment of RUVBL2 that acts as a gatekeeper to nucleotide exchange. This mechanism couples protein-induced motions of the DII domains with accessibility of the nucleotide-binding site in RUVBL1-RUVBL2, and it is likely a general mechanism shared with other RUVBL1-RUVBL2-containing complexes.


Sujet(s)
ATPases associated with diverse cellular activities/métabolisme , Protéines régulatrices de l'apoptose/métabolisme , Protéines de transport/métabolisme , Cryomicroscopie électronique/méthodes , Helicase/métabolisme , Protéines du choc thermique HSP90/métabolisme , ADP/métabolisme , Adénosine triphosphate/métabolisme , Sites de fixation , Histidine/métabolisme , Humains , Modèles moléculaires , Complexes multiprotéiques , Nucléotides/métabolisme , Liaison aux protéines , Structure en hélice alpha , Domaines protéiques
15.
Elife ; 82019 05 28.
Article de Anglais | MEDLINE | ID: mdl-31135337

RÉSUMÉ

Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ubiquitylation on other proteins, and are themselves carriers of such regulatory signals. Here we show that the DNA damage checkpoint regulating S-phase entry is controlled by a phosphorylation-dependent interaction of 53BP1 and TOPBP1. BRCT domains of TOPBP1 selectively bind conserved phosphorylation sites in the N-terminus of 53BP1. Mutation of these sites does not affect formation of 53BP1 or ATM foci following DNA damage, but abolishes recruitment of TOPBP1, ATR and CHK1 to 53BP1 damage foci, abrogating cell cycle arrest and permitting progression into S-phase. TOPBP1 interaction with 53BP1 is structurally complimentary to its interaction with RAD9-RAD1-HUS1, allowing these damage recognition factors to bind simultaneously to the same TOPBP1 molecule and cooperate in ATR activation in the G1 DNA damage checkpoint.


Sujet(s)
Protéines de transport/composition chimique , Altération de l'ADN/génétique , Protéines de liaison à l'ADN/composition chimique , Complexes multiprotéiques/composition chimique , Protéines nucléaires/composition chimique , Protéine-1 liant le suppresseur de tumeur p53/composition chimique , Protéines mutées dans l'ataxie-télangiectasie/composition chimique , Protéines mutées dans l'ataxie-télangiectasie/génétique , Protéines de transport/génétique , Points de contrôle du cycle cellulaire/génétique , Checkpoint kinase 1/composition chimique , Checkpoint kinase 1/génétique , Réplication de l'ADN/génétique , Protéines de liaison à l'ADN/génétique , Cellules HeLa , Humains , Méthylation , Complexes multiprotéiques/génétique , Protéines nucléaires/génétique , Phosphorylation , Liaison aux protéines/génétique , Conformation des protéines , Domaines protéiques/génétique , Maturation post-traductionnelle des protéines/génétique , Phase S/génétique , Protéine-1 liant le suppresseur de tumeur p53/génétique , Ubiquitination/génétique
16.
Mol Cell ; 74(3): 571-583.e8, 2019 05 02.
Article de Anglais | MEDLINE | ID: mdl-30898438

RÉSUMÉ

In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.


Sujet(s)
Protéines de transport/génétique , Instabilité des chromosomes/génétique , Protéines de liaison à l'ADN/génétique , Mitose/génétique , Protéines nucléaires/génétique , Transactivateurs/génétique , Protéines adaptatrices de la transduction du signal , Protéines du cycle cellulaire , Cassures double-brin de l'ADN , Altération de l'ADN/génétique , Réparation de l'ADN/génétique , Phase G1/génétique , Génome humain/génétique , Instabilité du génome/génétique , Histone , Humains , Phosphorylation , Transduction du signal/génétique
17.
Cell Rep ; 26(3): 573-581.e5, 2019 01 15.
Article de Anglais | MEDLINE | ID: mdl-30650352

RÉSUMÉ

XRCC1 accelerates repair of DNA single-strand breaks by acting as a scaffold protein for the recruitment of Polß, LigIIIα, and end-processing factors, such as PNKP and APTX. XRCC1 itself is recruited to DNA damage through interaction of its central BRCT domain with poly(ADP-ribose) chains generated by PARP1 or PARP2. XRCC1 is believed to interact directly with DNA at sites of damage, but the molecular basis for this interaction within XRCC1 remains unclear. We now show that the central BRCT domain simultaneously mediates interaction of XRCC1 with poly(ADP-ribose) and DNA, through separate and non-overlapping binding sites on opposite faces of the domain. Mutation of residues within the DNA binding site, which includes the site of a common disease-associated human polymorphism, affects DNA binding of this XRCC1 domain in vitro and impairs XRCC1 recruitment and retention at DNA damage and repair of single-strand breaks in vivo.


Sujet(s)
Cassures simple-brin de l'ADN , Poly adénosine diphosphate ribose/métabolisme , Protéine-1 de complémentation croisée de la réparation des lésions induites par les rayons X/métabolisme , Humains , Poly adénosine diphosphate ribose/génétique , Protéine-1 de complémentation croisée de la réparation des lésions induites par les rayons X/génétique
18.
Adv Exp Med Biol ; 1106: 73-83, 2018.
Article de Anglais | MEDLINE | ID: mdl-30484153

RÉSUMÉ

Cellular stability, assembly and activation of a growing list of macromolecular complexes require the action of HSP90 working in concert with the R2TP/Prefoldin-like (R2TP/PFDL) co-chaperone. RNA polymerase II, snoRNPs and complexes of PI3-kinase-like kinases, a family that includes the ATM, ATR, DNA-PKcs, TRAPP, SMG1 and mTOR proteins, are among the clients of the HSP90-R2TP system. Evidence links the R2TP/PFDL pathway with cancer, most likely because of the essential role in pathways commonly deregulated in cancer. R2TP forms the core of the co-cochaperone and orchestrates the recruitment of HSP90 and clients, whereas prefoldin and additional prefoldin-like proteins, including URI, associate with R2TP, but their function is still unclear. The mechanism by which R2TP/PFLD facilitates assembly and activation of such a variety of macromolecular complexes is poorly understood. Recent efforts in the structural characterization of R2TP have started to provide some mechanistic insights. We summarize recent structural findings, particularly how cryo-electron microscopy (cryo-EM) is contributing to our understanding of the architecture of the R2TP core complex. Structural differences discovered between yeast and human R2TP reveal unanticipated complexities of the metazoan R2TP complex, and opens new and interesting questions about how R2TP/PFLD works.


Sujet(s)
Chaperons moléculaires/composition chimique , Animaux , Cryomicroscopie électronique , Protéines du choc thermique HSP90/composition chimique , Humains , Tumeurs , Saccharomyces cerevisiae , Protéines de Saccharomyces cerevisiae
19.
Elife ; 72018 10 08.
Article de Anglais | MEDLINE | ID: mdl-30295604

RÉSUMÉ

TOPBP1 and its fission yeast homologueRad4, are critical players in a range of DNA replication, repair and damage signalling processes. They are composed of multiple BRCT domains, some of which bind phosphorylated motifs in other proteins. They thus act as multi-point adaptors bringing proteins together into functional combinations, dependent on post-translational modifications downstream of cell cycle and DNA damage signals. We have now structurally and/or biochemically characterised a sufficient number of high-affinity complexes for the conserved N-terminal region of TOPBP1 and Rad4 with diverse phospho-ligands, including human RAD9 and Treslin, and Schizosaccharomyces pombe Crb2 and Sld3, to define the determinants of BRCT domain specificity. We use this to identify and characterise previously unknown phosphorylation-dependent TOPBP1/Rad4-binding motifs in human RHNO1 and the fission yeast homologue of MDC1, Mdb1. These results provide important insights into how multiple BRCT domains within TOPBP1/Rad4 achieve selective and combinatorial binding of their multiple partner proteins.


Sujet(s)
Protéines de liaison à l'ADN/composition chimique , Phosphopeptides/composition chimique , Domaines protéiques , Protéines de Schizosaccharomyces pombe/composition chimique , Transglutaminases/composition chimique , Séquence d'acides aminés , Protéines de transport/composition chimique , Protéines de transport/génétique , Protéines de transport/métabolisme , Altération de l'ADN , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Humains , Ligands , Modèles moléculaires , Protéines nucléaires/composition chimique , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Phosphopeptides/génétique , Phosphopeptides/métabolisme , Phosphorylation , Liaison aux protéines , Schizosaccharomyces/génétique , Schizosaccharomyces/métabolisme , Protéines de Schizosaccharomyces pombe/génétique , Protéines de Schizosaccharomyces pombe/métabolisme , Transglutaminases/génétique , Transglutaminases/métabolisme
20.
Nat Commun ; 9(1): 3063, 2018 07 31.
Article de Anglais | MEDLINE | ID: mdl-30065299

RÉSUMÉ

In the originally published version of this article, the affiliation details for Hugo Muñoz-Hernández, Carlos F. Rodríguez and Oscar Llorca incorrectly omitted 'Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain'. This has now been corrected in both the PDF and HTML versions of the Article.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...