Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 35
Filtrer
Plus de filtres











Base de données
Gamme d'année
3.
Eur J Pharmacol ; 893: 173804, 2021 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-33347826

RÉSUMÉ

There is no known single therapeutic drug for treating hypercholesterolemia that comes with negligible systemic side effects. In the current study, using next generation RNA sequencing approach in mouse embryonic fibroblasts we discovered that two structurally related flavonoid compounds. Apigenin and Chrysin exhibited moderate blocking ability of multiple transcripts that regulate rate limiting enzymes in the cholesterol biosynthesis pathway. The observed decrease in cholesterol biosynthesis pathway correlated well with an increase in transcripts involved in generation and trafficking of ketone bodies as evident by the upregulation of Bdh1 and Slc16a6 transcripts. The hypocholesterolemic potential of Apigenin and Chrysin at higher concentrations along with their ability to generate ketogenic substrate especially during embryonic stage is useful or detrimental for embryonic health is not clear and still debatable. Our study will serve as a steppingstone to further the investigation in whole animal studies and also in translating this knowledge to human studies.


Sujet(s)
Anticholestérolémiants/pharmacologie , Apigénine/pharmacologie , Cholestérol/biosynthèse , Fibroblastes/effets des médicaments et des substances chimiques , Flavonoïdes/pharmacologie , Analyse de profil d'expression de gènes , Corps cétoniques/métabolisme , Lipogenèse/effets des médicaments et des substances chimiques , Transcriptome , Animaux , Anticholestérolémiants/composition chimique , Apigénine/composition chimique , Cellules cultivées , Fibroblastes/métabolisme , Flavonoïdes/composition chimique , Régulation de l'expression des gènes , Corps cétoniques/génétique , Lipogenèse/génétique , Souris , Structure moléculaire
4.
BMC Plant Biol ; 19(1): 435, 2019 Oct 21.
Article de Anglais | MEDLINE | ID: mdl-31638898

RÉSUMÉ

BACKGROUND: Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis. RESULTS: Here we show the progression by which AR form from founder cells in the basal pericycle cell layers in tomato stem cuttings. The first disordered clumps of cells assumed a dome shape that later differentiated into functional AR cell layers. Further growth resulted in emergence of mature AR through the epidermis following programmed cell death of epidermal cells. Auxin and ethylene levels increased in the basal stem cutting within 1 h. Tomato lines expressing the auxin response element DR5pro:YFP showed an increase in auxin distribution during the AR initiation phase, and was mainly concentrated in the meristematic cells of the developing AR. Treatment of stem cuttings with auxin, increased the number of AR primordia and the length of AR, while stem cuttings treated with the pre-emergent herbicide/auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) occasionally developed thick, agravitropic AR. Hormone profile analyses showed that auxin positively regulated AR formation, whereas perturbations to zeatin, salicylic acid, and abscisic acid homeostasis suggested minor roles during tomato stem rooting. The gene expression of specific auxin transporters increased during specific developmental phases of AR formation. CONCLUSION: These data show that AR formation in tomato stems is a complex process. Upon perception of a wounding stimulus, expression of auxin transporter genes and accumulation of auxin at founder cell initiation sites in pericycle cell layers and later in the meristematic cells of the AR primordia were observed. A clear understanding and documentation of these events in tomato is critical to resolve AR formation in recalcitrant species like hardwoods and improve stem cutting propagation efficiency and effectiveness.


Sujet(s)
Acides indolacétiques/métabolisme , Facteur de croissance végétal/métabolisme , Solanum lycopersicum/génétique , Solanum lycopersicum/croissance et développement , Protéines végétales/génétique , Protéines végétales/métabolisme , Racines de plante/génétique , Racines de plante/croissance et développement , Tiges de plante/génétique , Tiges de plante/croissance et développement
5.
J Exp Bot ; 68(12): 3145-3154, 2017 06 01.
Article de Anglais | MEDLINE | ID: mdl-28666349

RÉSUMÉ

Nearly all programmed and plastic plant growth responses are at least partially regulated by auxins, such as indole-3-acetic acid (IAA). Although vectorial, long distance auxin transport is essential to its regulatory function, all auxin responses are ultimately localized in individual target cells. As a consequence, cellular auxin concentrations are tightly regulated via coordinated biosynthesis, transport, conjugation, and oxidation. The primary auxin oxidative product across species is 2-oxindole-3-acetic acid (oxIAA), followed by glucose and amino acid conjugation to oxIAA. Recently, the enzymes catalyzing the oxidative reaction were characterized in Arabidopsis thaliana. DIOXYGENASE OF AUXIN OXIDATION (DAO) comprises a small subfamily of the 2-oxoglutarate and Fe(II) [2-OG Fe(II)] dependent dioxygenase superfamily. Biochemical and genetic studies have revealed critical physiological functions of DAO during plant growth and development. Thus far, DAO has been identified in three species by homology. Here, we review historical and recent studies and discuss future perspectives regarding DAO and IAA oxidation.


Sujet(s)
Dioxygenases/génétique , Homéostasie , Acides indolacétiques/métabolisme , Phénomènes physiologiques des plantes , Protéines végétales/génétique , Dioxygenases/métabolisme , Protéines végétales/métabolisme
6.
Proc Natl Acad Sci U S A ; 113(39): 11010-5, 2016 09 27.
Article de Anglais | MEDLINE | ID: mdl-27651492

RÉSUMÉ

Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:ß-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/enzymologie , Biocatalyse , Acides indolacétiques/métabolisme , Spécificité d'organe , Séquence d'acides aminés , Arabidopsis/génétique , Protéines d'Arabidopsis/composition chimique , ADN bactérien/génétique , Fleurs/métabolisme , Régulation de l'expression des gènes végétaux , Techniques de knock-down de gènes , Test de complémentation , Métabolome , Mutation/génétique , Oxydoréduction , Phénotype , Phylogenèse , Racines de plante/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Protéines recombinantes/métabolisme , Alignement de séquences , Spectrométrie de masse en tandem , Facteurs temps
7.
Methods Mol Biol ; 1398: 55-67, 2016.
Article de Anglais | MEDLINE | ID: mdl-26867615

RÉSUMÉ

PIN auxin efflux carriers and ABCB auxin transporters are important for polar auxin transport, organogenesis and long distance auxin transport. Along with the auxin influx symporter AUX1, they are essential for tropic responses such as gravitropism and phototropism where lateral redistribution of auxin is required for the tropic response to occur. Immunolocalization of plant membrane transporters is an effective technique to determine the transporters' subcellular localization patterns in the tissues of interest, especially when fluorescent protein fusions of the protein of interest are not available. Immunolocalization is also a valuable tool for validation of the localization of fluorescent protein fusions when the fusions are available. Here we describe the procedures to prepare plant tissue samples and fix them for whole mount or embedding and sectioning. We focus on immunolocalizations of PINs and ABCBs in Arabidopsis and maize tissues. In addition, we describe treatments of roots with inhibitors of cellular trafficking: brefeldin A (BFA), a fungal compound that blocks exocytosis; wortmannin, a fungal compound that inhibits phosphatidylinositol 3-kinase and induces fusion of pre-vacuolar compartments and multi-vascular bodies; and oryzalin, a fungal compound that depolymerizes microtubules. Inhibitor treatments are performed prior to fixation and affect the localization patterns of PINs and ABCBs, giving insight into cell type -specific trafficking mechanisms. The procedures described for Arabidopsis and maize can be easily adapted for other herbaceous plants.


Sujet(s)
Transporteurs ABC/métabolisme , Protéines de transport membranaire/métabolisme , Protéines végétales/métabolisme , Transporteurs ABC/génétique , Arabidopsis/métabolisme , Protéines d'Arabidopsis/métabolisme , Régulation de l'expression des gènes végétaux , Protéines végétales/génétique , Racines de plante/métabolisme , Zea mays/métabolisme
8.
Plant Cell ; 27(12): 3383-96, 2015 Dec.
Article de Anglais | MEDLINE | ID: mdl-26589552

RÉSUMÉ

The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/enzymologie , Génome végétal/génétique , Inorganic Pyrophosphatase/métabolisme , Vacuolar Proton-Translocating ATPases/métabolisme , Vacuoles/enzymologie , Acclimatation , Arabidopsis/cytologie , Arabidopsis/génétique , Arabidopsis/physiologie , Protéines d'Arabidopsis/antagonistes et inhibiteurs , Protéines d'Arabidopsis/génétique , Basse température , Endosomes/enzymologie , Fleurs/cytologie , Fleurs/enzymologie , Fleurs/génétique , Fleurs/physiologie , Concentration en ions d'hydrogène , Inorganic Pyrophosphatase/antagonistes et inhibiteurs , Inorganic Pyrophosphatase/génétique , Méristème/cytologie , Méristème/enzymologie , Méristème/génétique , Méristème/physiologie , Mutagenèse par insertion , Phénotype , Racines de plante/cytologie , Racines de plante/enzymologie , Racines de plante/génétique , Racines de plante/physiologie , Plant/cytologie , Plant/enzymologie , Plant/génétique , Plant/physiologie , Analyse de séquence d'ADN , Vacuolar Proton-Translocating ATPases/antagonistes et inhibiteurs , Vacuolar Proton-Translocating ATPases/génétique , Réseau trans-golgien/enzymologie
9.
J Exp Bot ; 65(12): 3045-53, 2014 Jul.
Article de Anglais | MEDLINE | ID: mdl-24723407

RÉSUMÉ

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.


Sujet(s)
Protéines d'Arabidopsis/génétique , Fruit/enzymologie , Inorganic Pyrophosphatase/génétique , Racines de plante/enzymologie , Solanum lycopersicum/enzymologie , Solanum lycopersicum/croissance et développement , Arabidopsis/enzymologie , Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Fruit/génétique , Fruit/croissance et développement , Expression des gènes , Inorganic Pyrophosphatase/métabolisme , Solanum lycopersicum/génétique , Solanum lycopersicum/métabolisme , Phosphore/métabolisme , Feuilles de plante/enzymologie , Feuilles de plante/génétique , Feuilles de plante/croissance et développement , Racines de plante/génétique , Racines de plante/croissance et développement , Végétaux génétiquement modifiés/génétique , Végétaux génétiquement modifiés/croissance et développement , Végétaux génétiquement modifiés/métabolisme
10.
Physiol Plant ; 151(1): 97-111, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24617531

RÉSUMÉ

The plant hormone auxin is transported from sites of synthesis to sites of action. Auxin responses are mediated by fast (non-transcriptional) and slow (transcriptional; ubiquitinylation) responses, which affect physiological changes at cellular and organismal scales. As such, auxin transport vectors regulate programmed and plastic growth responses to optimize growth and development. Here we address some common problems in extrapolating 'universal' understanding of auxin transport streams from analyses of loss-of-function mutants and auxin transport inhibitors. We also discuss the analytical methods and tools used to directly quantify, measure and infer auxin gradients within the plant [DR5:GUS/GFP (beta-glucuronidase/green fluorescent protein), DII-VENUS; surface electrodes, direct quantification]. We discuss the assumptions and limitations of each of these analyses, present comparative summaries of auxin transport methods and assay conditions (diffusion, non-specific transport and relevant assay conditions), and consider what is actually being transported and measured [labeled-indole-3-acetic acid (IAA), IAA metabolites].


Sujet(s)
Acides indolacétiques/métabolisme , Facteur de croissance végétal/métabolisme , Transport biologique/physiologie , Régulation de l'expression des gènes végétaux/physiologie , Protéines végétales/génétique , Protéines végétales/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE