Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 255
Filtrer
1.
Ecotoxicol Environ Saf ; 282: 116761, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39047370

RÉSUMÉ

The widespread use of nanomaterials in agriculture may introduce multiple engineered nanoparticles (ENPs) into the environment, posing a combined risk to crops. However, the precise molecular mechanisms explaining how plant tissues respond to mixtures of individual ENPs remain unclear, despite indications that their combined toxicity differs from the summed toxicity of the individual ENPs. Here, we used a variety of methods including physicochemical, biochemical, and transcriptional analyses to examine the combined effects of graphene nanoplatelets (GNPs) and titanium dioxide nanoparticles (TiO2 NPs) on hydroponically exposed lettuce (Lactuca sativa) seedlings. Results indicated that the presence of GNPs facilitated the accumulation of Ti as TiO2 NPs in the seedling roots. Combined exposure to GNPs and TiO2 NPs caused less severe oxidative damage in the roots compared to individual exposures. Yet, GNPs and TiO2 NPs alone and in combination did not cause oxidative damage in the shoots. RNA sequencing data showed that the mixture of GNPs and TiO2 NPs led to a higher number of differentially expressed genes (DEGs) in the seedlings compared to exposure to the individual ENPs. Moreover, the majority of the DEGs encoding superoxide dismutase displayed heightened expression levels in the seedlings exposed to the combination of GNPs and TiO2 NPs. The level of gene ontology (GO) enrichment in the seedlings exposed to the mixture of GNPs and TiO2 NPs was found to be greater than the level of GO enrichment observed after exposure to isolated GNPs or TiO2 NPs. Furthermore, the signaling pathways, specifically the "MAPK signaling pathway-plant" and "phenylpropanoid biosynthesis," exhibited a close association with oxidative stress. This study has provided valuable insights into the molecular mechanisms underlying plant resistance against multiple ENPs.

2.
Environ Sci Pollut Res Int ; 31(29): 42202-42211, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38862802

RÉSUMÉ

The environmental behavior of microplastics (MPs) has attracted global attention. Research has confirmed that MPs can strongly absorb almost every kind of pollutant and can serve as vectors for pollutant transport. In this research, the sorption isotherms of six organic pollutants with different structure on four virgin plastic particles with different crystallinity were determined. Results indicated that the hydrophobicity (KOW) of organic pollutants and the crystallinity of MPs were the two key factors that affected the sorption process of organic pollutants on MPs. Strong correlations were observed between KOW and the partition coefficient. Hydrophobic partition was one of the major mechanisms regardless of the type of organic chemical (hydrophobic, polar, or dissociable). What is more, the influence of the crystallinity of MPs on the sorption process increased with increasing hydrophobicity of the chemical. Combining this result with analyzing the related literature on the effect of crystallinity, it was concluded that the effect of crystallinity on the sorption of chemicals with strong hydrophobicity was obvious, whereas this effect was negligible for chemicals with weak hydrophobicity. The influence of the crystallinity of MPs on sorption could even exceed the influence of MPs type, so crystallinity should be considered carefully when discussing the sorption capacity of MPs. This study enhances the understanding of the sorption of organic pollutants by MPs.


Sujet(s)
Interactions hydrophobes et hydrophiles , Microplastiques , Microplastiques/composition chimique , Adsorption , Matières plastiques/composition chimique , Composés chimiques organiques/composition chimique
3.
Chemosphere ; 361: 142491, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38821130

RÉSUMÉ

In recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp. Employing a suite of experimental methodologies, including Raman spectroscopy, contact angle measurements, electron microscopy, and chromatography, we examined the physicochemical interplay between the GFNs and TBBPA. The toxicity potentials of individual constituents and their binary combinations were assessed through growth inhibition assays, quantifying reactive oxygen species (ROS) generation and malondialdehyde (MDA) production, photosynthetic activity analyses, and various biochemical assays. The toxicity of TBBPA and graphene-based nanomaterials (GFNs) was examined individually and in combinations. Both pristine TBBPA and GFNs showed dose-dependent toxicity. While lower TBBPA concentrations exacerbated toxicity in binary mixtures, higher TBBPA levels reduced the toxic effects compared to pristine TBBPA treatments. The principal mechanism underlying toxicity was ROS generation, resulting in membrane damage and perturbation of photosynthetic parameters. Cluster heatmap and Pearson correlation were employed to assess correlations between the biological parameters. Finally, ecological risk assessment was undertaken to evaluate environmental impacts of the individual components and the mixture in the algae.


Sujet(s)
Chlorella , Ignifuges , Graphite , Microalgues , Nanostructures , Polybromobiphényles , Ignifuges/toxicité , Polybromobiphényles/toxicité , Graphite/toxicité , Chlorella/effets des médicaments et des substances chimiques , Nanostructures/toxicité , Nanostructures/composition chimique , Microalgues/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Polluants chimiques de l'eau/toxicité
4.
J Hazard Mater ; 472: 134450, 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38701726

RÉSUMÉ

Spontaneous natural succession in metal mine tailings is fundamental to the rehabilitation of bare tailing. Here, an abandoned rare earth element (REE) mine tailing with spontaneous colonisation by pioneer plants with different functional traits was selected. Soil nutrient cycling, fertility, organic matter decomposition as well as underground organismal communities and their multitrophic networks were investigated. Compared with the bare tailing, the colonisation with Lycopodium japonicum, Miscanthus sinensis, and Dicranopteris dichotoma increased soil multifunction by 222%, 293%, and 525%, respectively. This was accompanied by significant changes in soil bacterial and protistan community composition and increased soil multitrophic network complexity. Rhizospheres of different plant species showed distinct microbial community composition compared to that of bare tailing. Some WPS-2, Chloroflexi, and Chlorophyta were mainly present in the bare tailing, while some Proteobacteria and Cercozoa were predominantly seen in the rhizosphere. Pearson correlation and Random Forest revealed the biotic factors driving soil multifunction. Structural equation modelling further revealed that pioneer plants improved soil multifunction primarily by decreasing the microbial biodiversity and increasing the multitrophic network complexity. Overall, this highlights the importance of subterrestrial organisms in accelerating soil rehabilitation during natural succession and provides options for the ecological restoration of degraded REE mining areas.


Sujet(s)
Terres rares , Mine , Microbiologie du sol , Sol , Sol/composition chimique , Polluants du sol , Plantes , Rhizosphère , Bactéries , Biodiversité , Microbiote
5.
Sci Total Environ ; 932: 172556, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38679085

RÉSUMÉ

This study reviewed scientific literature on inhalation exposure to heavy metals (HMs) in various indoor and outdoor environments and related carcinogenic and non-carcinogenic risk. A systematic search in Web of Science, Scopus, PubMed, Embase, and Medline databases yielded 712 results and 43 articles met the requirements of the Population, Exposure, Comparator, and Outcomes (PECO) criteria. Results revealed that HM concentrations in most households exceeded the World Health Organization (WHO) guideline values, indicating moderate pollution and dominant anthropogenic emission sources of HMs. In the analyzed schools, universities, and offices low to moderate levels of air pollution with HMs were revealed, while in commercial environments high levels of air pollution were stated. The non-carcinogenic risk due to inhalation HM exposure exceeded the acceptable level of 1 in households, cafes, hospitals, restaurants, and metros. The carcinogenic risk for As and Cr in households, for Cd, Cr, Ni, As, and Co in educational environments, for Pb, Cd, Cr, and Co in offices and commercial environments, and for Ni in metros exceeded the acceptable level of 1 × 10-4. Carcinogenic risk was revealed to be higher indoors than outdoors. This review advocates for fast and effective actions to reduce HM exposure for safer breathing.


Sujet(s)
Polluants atmosphériques , Exposition par inhalation , Métaux lourds , Métaux lourds/analyse , Humains , Exposition par inhalation/statistiques et données numériques , Polluants atmosphériques/analyse , Appréciation des risques , Pollution de l'air intérieur/statistiques et données numériques , Pollution de l'air intérieur/effets indésirables , Pollution de l'air/statistiques et données numériques
6.
J Hazard Mater ; 469: 134033, 2024 May 05.
Article de Anglais | MEDLINE | ID: mdl-38521033

RÉSUMÉ

Photochemical reactions contribute to the attenuation and transformation of pharmaceuticals and personal care products (PPCPs) in surface natural waters. Nevertheless, effects of DOM and halogen ions on phototransformation of PPCPs remain elusive. This work selected disparate PPCPs as target pollutants to investigate their aquatic phototransformation processes. Results show that PPCPs containing multiple electron-donating groups (-OH, -NH2, -OR, etc.) are more reactive with photochemically produced reactive intermediates (PPRIs) such as triplet DOM (3DOM*), singlet oxygen (1O2), and reactive halogen species (RHSs), relative to PPCPs containing electron-withdrawing groups (-NOR, -COOR, -OCR, etc.). The generation of RHSs as a result of the coexistance of DOM and halide ions changed the contribution of PPRIs to the photochemical conversion of PPCPs during their migration from fresh water to seawater. For PPCPs (AMP, SMZ, PN, NOR, CIP, etc) with highly reactive groups toward RHSs, the generation of RHSs facilitated their photolysis in halide ion-rich waters, where Cl- plays a critical role in the photochemical transformation of PPCPs. Density functional theory (DFT) calculations showed that single electron transfer and H-abstraction are main reaction pathways of RHSs with the PPCPs. These results demonstate the irreplaceable roles of PPRIs and revealing the underlying reaction mechanisms during the phototransformation of PPCPs, which contributes to a better understanding of the environmental behaviors of PPCPs in complex aquatic environments.


Sujet(s)
Cosmétiques , Polluants chimiques de l'eau , Matière organique dissoute , Halogènes , Polluants chimiques de l'eau/analyse , Photolyse , Ions , Préparations pharmaceutiques
7.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38460143

RÉSUMÉ

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Sujet(s)
Chaine alimentaire , Terres rares , Herbivorie , Plantes , Sol , Lactuca
8.
Regul Toxicol Pharmacol ; 148: 105589, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38403009

RÉSUMÉ

Risk assessment of chemicals is a time-consuming process and needs to be optimized to ensure all chemicals are timely evaluated and regulated. This transition could be stimulated by valuable applications of in silico Artificial Intelligence (AI)/Machine Learning (ML) models. However, implementation of AI/ML models in risk assessment is lagging behind. Most AI/ML models are considered 'black boxes' that lack mechanistical explainability, causing risk assessors to have insufficient trust in their predictions. Here, we explore 'trust' as an essential factor towards regulatory acceptance of AI/ML models. We provide an overview of the elements of trust, including technical and beyond-technical aspects, and highlight elements that are considered most important to build trust by risk assessors. The results provide recommendations for risk assessors and computational modelers for future development of AI/ML models, including: 1) Keep models simple and interpretable; 2) Offer transparency in the data and data curation; 3) Clearly define and communicate the scope/intended purpose; 4) Define adoption criteria; 5) Make models accessible and user-friendly; 6) Demonstrate the added value in practical settings; and 7) Engage in interdisciplinary settings. These recommendations should ideally be acknowledged in future developments to stimulate trust and acceptance of AI/ML models for regulatory purposes.


Sujet(s)
Intelligence artificielle , Confiance , Apprentissage machine , Simulation numérique , Appréciation des risques
9.
Nanotoxicology ; 18(2): 107-118, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38420713

RÉSUMÉ

To date, research on the toxicity and potential environmental impacts of nanomaterials has predominantly focused on relatively simple and single-component materials, whilst more complex nanomaterials are currently entering commercial stages. The current study aimed to assess the long-term and size-dependent (60 and 500 nm) toxicity of a novel core-shell nanostructure consisting of a SiC core and TiO2 shell (SiC/TiO2, 5, 25, and 50 mg L-1) to the common model organism Daphnia magna. These novel core-shell nanostructures can be categorized as advanced materials. Experiments were conducted under environmentally realistic feeding rations and in the presence of a range of concentrations of humic acid (0.5, 2, 5, and 10 mg L-1 TOC). The findings show that although effect concentrations of SiC/TiO2 were several orders of magnitude lower than the current reported environmental concentrations of more abundantly used nanomaterials, humic acid can exacerbate the toxicity of SiC/TiO2 by reducing aggregation and sedimentation rates. The EC50 values (mean ± standard error) based on nominal SiC/TiO2 concentrations for the 60 nm particles were 28.0 ± 11.5 mg L-1 (TOC 0.5 mg L-1), 21.1 ± 3.7 mg L-1 (TOC 2 mg L-1), 18.3 ± 5.4 mg L-1 (TOC 5 mg L-1), and 17.8 ± 2.4 mg L-1 (TOC 10 mg L-1). For the 500 nm particles, the EC50 values were 34.9 ± 16.5 mg L-1 (TOC 0.5 mg L-1), 24.8 ± 5.6 mg L-1 (TOC 2 mg L-1), 28.0 ± 10.0 mg L-1 (TOC 5 mg L-1), and 23.2 ± 4.1 mg L-1 (TOC 10 mg L-1). We argue that fate-driven phenomena are often neglected in effect assessments, whilst environmental factors such as the presence of humic acid may significantly influence the toxicity of nanomaterials.


Sujet(s)
Composés inorganiques du carbone , Daphnia magna , Substances humiques , Titane , Animaux , Composés inorganiques du carbone/toxicité , Daphnia magna/effets des médicaments et des substances chimiques , Substances humiques/analyse , Nanoparticules/toxicité , Taille de particule , Composés du silicium/toxicité , Titane/toxicité , Polluants chimiques de l'eau/toxicité
10.
Ecotoxicol Environ Saf ; 272: 116035, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38309234

RÉSUMÉ

A suspension of copper oxide nanoparticles (CuO NPs) is a mixture of dissolved and particulate Cu, the relative proportions of which highly depend on the water chemistry. However, the relationship between different proportions of particulate and dissolved Cu and the overall toxicity of CuO NPs is still unknown. This study investigated the response of Chlorella vulgaris to CuO NPs at varying solution pH and at different tannic acid (TA) additions, with a focus on exploring whether and how dissolved and particulate Cu contribute to the overall toxicity of CuO NPs. The results of the exposure experiments demonstrated the involvement of both dissolved and particulate Cu in inducing toxicity of CuO NPs, and the inhibition of CuO NPs on cell density of Chlorella vulgaris was found to be significantly (p < 0.05) alleviated with increased levels of TA and pH (< 8). Using the independent action model, the contribution to toxicity of particulate Cu was found to be enhanced with increasing pH values and TA concentrations. The toxic unit indicator better (R2 = 0.86, p < 0.001) explained impacts of CuO NPs on micro-algae cells than commonly used mass concentrations (R2 = 0.27-0.77, p < 0.05) across different levels of pH and TA. Overall, our study provides an additivity-based method to improve the accuracy of toxicity prediction through including contributions to toxicity of both dissolved and particulate Cu and through eliminating the uneven distribution of data due to large variations in total Cu, particulate Cu, dissolved Cu, Cu2+ activities, Cu-TA complexes and other Cu-complexes concentrations with varying water chemistry conditions.


Sujet(s)
Chlorella vulgaris , Nanoparticules métalliques , Nanoparticules , Polyphénols , Cuivre/toxicité , Cuivre/composition chimique , Nanoparticules métalliques/toxicité , Nanoparticules métalliques/composition chimique , Eau , Concentration en ions d'hydrogène
12.
Environ Pollut ; 341: 123015, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38008250

RÉSUMÉ

GFNs have widespread applications but can harm marine systems due to excessive use and improper disposal. Algae-secreted EPS can mitigate nanomaterial harm, but their impact on GFN toxicity is understudied. Hence, in the present study, we investigated the toxicity of three GFNs, graphene oxide (GO), reduced graphene oxide (rGO), and graphene, in pristine and EPS-adsorbed forms in the marine alga Chlorella sp. At an environmentally relevant concentration of 1 mgL-1, all three GFNs induced considerable oxidative stress and impeded growth and photosynthetic activity of the algae. The order of the toxic potential followed GO > rGO > graphene. The various facets of adsorption of EPS (1:1 mixture of loosely bound, and tightly bound EPS) on GFNs were investigated through microscopy, surface chemical analyses, fluorescence quenching studies, and isotherm and kinetics studies. Amongst the pristine GFNs treated with algal cells, GO was found to exert the maximum negative effects on algal growth. Upon adsorption of EPS over the GFNs, a significant decline in growth inhibition was observed compared to the respective pristine forms which strongly correlated with reduced oxidative stress and enhanced photosynthetic parameters in the cells. The formation of a layer of eco-corona after interaction of GFNs with EPS possibly caused a barrier effect which in turn diminished their toxic potential. The findings from the present investigation offer valuable insights into the environmental toxicity of GFNs and show that the eco-corona formation may lessen the risk posed by these materials in the marine environment.


Sujet(s)
Chlorella , Graphite , Nanostructures , Graphite/toxicité , Nanostructures/toxicité , Stress oxydatif
13.
Heliyon ; 9(12): e23178, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38149197

RÉSUMÉ

Advanced materials comprising multiple metal alloys have made their way into the market. Trimetal-based nanomaterials (TNMs) are an example of advanced materials which have gained significant traction and are now employed in a wide array of products. It is essential to raise the question if the toxicity of advanced nanomaterials like TNMs differs from the joint effects as manifested by exposure to the single component nanoparticles (NPs). To answer this question, a trimetal-based nanomaterial: bismuth cobalt zinc oxide (BiCoZnO) was tested. This TNM had a mass ratio of 90 % ZnO NPs, 7 % Bi2O3 NPs and 3 % Co3O4 NPs. Nanoparticle-exposed lettuce seedlings (Lactuca sativa L.) showed decreases in relative root elongation (RRE) and biomass production after 21 days of exposure. The 50 % of maximal effective concentration (EC50) value of the TNMs for biomass production was 1.2 mg L-1 when the exposure period was 240 h. This is of the same magnitude as the EC50 values found for ZnO NPs (EC50 = 1.5 mg L-1) and for the mixture of components NPs (MCNPs) which jointly form the TNMs (EC50 = 3.7 mg L-1) after 10 d of exposure. The inhibition of plant root elongation by the TNMs was partially (65 %) attributed to the release of Zn ions, with the actual concentration of released Zn ions being lower in TNMs compared to the actual concentration of Zn ions in case of ZnO NPs. It is therefore to be concluded that the concentration of Zn ions cannot be used as a direct measure to compare the toxicity between traditional and advanced Zn-related nanomaterials. The EC50 values could be assessed within a factor of two; which is helpful when developing advanced alloy nanomaterials and assessing prospective the effects of trimetal-based nanomaterials.

14.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Article de Anglais | MEDLINE | ID: mdl-38012053

RÉSUMÉ

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Sujet(s)
Oligochaeta , Animaux , Oligochaeta/métabolisme , Molybdène/pharmacologie , Transport biologique , Simulation numérique , Imagerie moléculaire
15.
J Hazard Mater ; 460: 132487, 2023 10 15.
Article de Anglais | MEDLINE | ID: mdl-37690204

RÉSUMÉ

Extensive rare earth element (REE) mining activities pose threats to agricultural soils surrounding the mining areas. Here, low and high REE-contaminated soils from farmlands around mine tailings were remediated with hydroxyapatite. A toxicokinetic approach was applied to assess whether the use of hydroxyapatite reduced the bioavailability of REEs and thus inhibited their accumulation in the terrestrial organism Enchytraeus crypticus. Our results showed that addition of hydroxyapatite increased soil pH, DOC and anion contents. CaCl2-extractable REE concentrations significantly decreased, indicating the stabilization by hydroxyapatite. The influence of hydroxyapatite on the REE accumulation in enchytraeids was quantified by fitting a toxicokinetic model to dynamic REE body concentrations. The estimated uptake (Ku) and elimination rate constants (Ke), and bioaccumulation factor (BAF) for REEs were in the range of 0.000821 - 0.122 kgsoil/kgworm day-1, 0.0224 - 0.136 day-1, and 0.00135 - 1.96, respectively. Both Ku and BAF were significantly reduced by over 80% by hydroxyapatite addition, confirming the decreased REE bioavailability. Low atomic number REEs had higher BAFs in slightly contaminated soil, suggesting a higher bioaccumulation potential of light REEs in soil organisms. Overall, chemical stabilization with amendments can attenuate the bioavailability of REEs and reduce the potential ecological risk of contaminated agricultural soils near REE mining areas.


Sujet(s)
Terres rares , Oligochaeta , Animaux , Sol , Toxicocinétique , Agriculture , Bioaccumulation , Durapatite , Terres rares/toxicité
16.
Environ Sci Technol ; 57(30): 11009-11021, 2023 08 01.
Article de Anglais | MEDLINE | ID: mdl-37471269

RÉSUMÉ

Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.


Sujet(s)
Voies des issues indésirables , Oligochaeta , Polluants du sol , Animaux , Polluants du sol/toxicité , Oligochaeta/métabolisme , Lipidomique , Molybdène/toxicité , Écosystème , Sol
17.
J Hazard Mater ; 458: 132011, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37451100

RÉSUMÉ

Dissolved organic matter (DOM) plays an important role in the biogeochemical cycle in natural waters. The determination and characterization of the excited triplet state of DOM (3DOM*) have attracted much attention recently. However, the underlying differences of determined 3DOM* through different pathways are not yet fully understood. In this study, the differences and underlying mechanisms of the determined 3DOM* using 2,4-hexadien-1-ol (HDO) through an energy transfer pathway and 2,4,6-trimethylphenol (TMP) through an electron transfer pathway, were investigated. The results showed that the determined quantum yields of 3DOM* (Φ3DOM*) for four commercial and four isolated local DOMs are different using HDO ((0.04 ± 0.00) × 10-2 to (2.9 ± 0.17) × 10-2)) and TMP ((0.08 ± 0.01) × 10-2 to (1.2 ± 0.17) × 10-2), respectively. For 17 DOM-analogs, significant differences were also observed with the quantum yields of their 3DOM* determined using HDO (ΦHDO) and the triplet-state quantum yield coefficients determined using TMP (fTMP). It indicates the different reactivity of TMP and HDO with the excited triplet of the chromophores with different structures within the isolated DOM. Based on the experimental and predicted values of fTMP and ΦHDO for different DOM-analogs, the impact of substituents on differences in 3DOM* values were further revealed. These results demonstrated that the levels of 3DOM* depended on the chemical functionalities present in the DOM-analogs.

18.
Water Res ; 242: 120249, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37356163

RÉSUMÉ

Micro- and nanoplastics are emerging concerns due to their environmental ubiquity and currently largely unknown ecological impacts. Leveraging on a recently developed method using europium-doped polystyrene particles (PS-Eu), our present work aimed to accurately trace the uptake and transport of micro- and nanoplastics in aquatic plants and shed insights into the potential of different aquatic plants for trapping and removal of plastics from water environment. Seedlings of Vallisneria denseserrulata Makino (submerged plant), Iris tectorum Maxim (emergent plant), and Eichhornia crassipes Solms (floating plant) were exposed to 100 nm and 2 µm PS-Eu in freshwater (5 µg/mL) or sediments (5 µg/g) for 8 weeks. Fluorescence imaging clearly evidenced that PS-Eu mainly accumulated in the intercellular space and were transported from roots to leaves via the apoplastic path and vascular bundle. Mass spectrum analysis demonstrated that up to 6250 µg/g nanoplastics were trapped in aquatic plants (mainly in roots) with a bioconcentration factor of 306.5, depending on exposure routes and plant species. Owing to their excellent capture capability and high tolerance to plastic exposures, floating plants like E. crassipes are promising for immobilizing and removing fine plastics from the water environment.

19.
Environ Int ; 177: 108025, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37329761

RÉSUMÉ

Research on theoretical prediction methods for the mixture toxicity of engineered nanoparticles (ENPs) faces significant challenges. The application of in silico methods based on machine learning is emerging as an effective strategy to address the toxicity prediction of chemical mixtures. Herein, we combined toxicity data generated in our lab with experimental data reported in the literature to predict the combined toxicity of seven metallic ENPs for Escherichia coli at different mixing ratios (22 binary combinations). We thereafter applied two machine learning (ML) techniques, support vector machine (SVM) and neural network (NN), and compared the differences in the ability to predict the combined toxicity by means of the ML-based methods and two component-based mixture models: independent action and concentration addition. Among 72 developed quantitative structure-activity relationship (QSAR) models by the ML methods, two SVM-QSAR models and two NN-QSAR models showed good performance. Moreover, an NN-based QSAR model combined with two molecular descriptors, namely enthalpy of formation of a gaseous cation and metal oxide standard molar enthalpy of formation, showed the best predictive power for the internal dataset (R2test = 0.911, adjusted R2test = 0.733, RMSEtest = 0.091, and MAEtest = 0.067) and for the combination of internal and external datasets (R2test = 0.908, adjusted R2test = 0.871, RMSEtest = 0.255, and MAEtest = 0.181). In addition, the developed QSAR models performed better than the component-based models. The estimation of the applicability domain of the selected QSAR models showed that all the binary mixtures in training and test sets were in the applicability domain. This study approach could provide a methodological and theoretical basis for the ecological risk assessment of mixtures of ENPs.


Sujet(s)
Nanoparticules métalliques , Relation quantitative structure-activité , , Nanoparticules métalliques/toxicité , Apprentissage machine , Oxydes , Escherichia coli
20.
Environ Pollut ; 333: 121894, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37271364

RÉSUMÉ

Novel nanomaterial-based pesticide formulations are increasingly perceived as promising aids in the transition to more efficient agricultural production systems. The current understanding of potential unintended (eco)toxicological impacts of nano-formulated pesticides is scarce, in particular with regard to (non-target) aquatic organisms and ecosystems. The present study reports the results of a long-term freshwater mesocosm experiment which assessed responses of individual zooplankton taxa and communities to a novel TiO2-coated nano-formulation of the fungicide carbendazim. Population- and community trends were assessed and compared in response to the nano-formulation and its constituents applied individually (i.e. nano-sized TiO2, carbendazim) and in combination (i.e. nano-sized TiO2 & carbendazim). Minimal differences were observed between effects induced by the nano-formulation and its active ingredient (i.e. carbendazim) when applied at equivalent nominal test concentrations (4 µg L-1). Nano-sized TiO2 was found to affect zooplankton community trends when applied separately at environmentally realistic concentrations (20 µg L-1 nominal test concentration). However, when nano-sized TiO2 was applied in combination with carbendazim, nano-sized TiO2 was found not to alter effects on community trends induced by carbendazim. The findings of the current study provide an extensive and timely addition to the current body of work available on non-target impacts of nano-formulated pesticides.


Sujet(s)
Pesticides , Polluants chimiques de l'eau , Animaux , Zooplancton , Écosystème , Pesticides/toxicité , Polluants chimiques de l'eau/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE