Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Polymers (Basel) ; 16(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39125208

RÉSUMÉ

Additive manufacturing (AM) technologies, including 3D mortar printing (3DMP), 3D concrete printing (3DCP), and Liquid Deposition Modeling (LDM), offer significant advantages in construction. They reduce project time, costs, and resource requirements while enabling free design possibilities and automating construction processes, thereby reducing workplace accidents. However, AM faces challenges in achieving superior mechanical performance compared to traditional methods due to poor interlayer bonding and material anisotropies. This study aims to enhance structural properties in AM constructions by embedding 3D-printed polymeric meshes in clay-based mortars. Clay-based materials are chosen for their environmental benefits. The study uses meshes with optimal geometry from the literature, printed with three widely used polymeric materials in 3D printing applications (PLA, ABS, and PETG). To reinforce the mechanical properties of the printed specimens, the meshes were strategically placed in the interlayer direction during the 3D printing process. The results show that the 3D-printed specimens with meshes have improved flexural strength, validating the successful integration of these reinforcements.

2.
Biomimetics (Basel) ; 9(7)2024 Jul 11.
Article de Anglais | MEDLINE | ID: mdl-39056865

RÉSUMÉ

Towards a sustainable future in construction, worldwide efforts aim to reduce cement use as a binder core material in concrete, addressing production costs, environmental concerns, and circular economy criteria. In the last decade, numerous studies have explored cement substitutes (e.g., fly ash, silica fume, clay-based materials, etc.) and methods to mimic the mechanical performance of cement by integrating polymeric meshes into their matrix. In this study, a systemic approach incorporating computer aid and biomimetics is utilized for the development of 3D-printed clay-based composite mortar reinforced with advanced polymeric bioinspired lattice structures, such as honeycombs and Voronoi patterns. These natural lattices were designed and integrated into the 3D-printed clay-based prisms. Then, these configurations were numerically examined as bioinspired lattice applications under three-point bending and realistic loading conditions, and proper Finite Element Models (FEMs) were developed. The extracted mechanical responses were observed, and a conceptual redesign of the bioinspired lattice structures was conducted to mitigate high-stress concentration regions and optimize the structures' overall mechanical performance. The optimized bioinspired lattice structures were also examined under the same conditions to verify their mechanical superiority. The results showed that the clay-based prism with honeycomb reinforcement revealed superior mechanical performance compared to the other and is a suitable candidate for further research. The outcomes of this study intend to further research into non-cementitious materials suitable for industrial and civil applications.

3.
Polymers (Basel) ; 16(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38891482

RÉSUMÉ

Agricultural waste is a renewable source of lignocellulosic components, which can be processed in a variety of ways to yield added-value materials for various applications, e.g., polymer composites. However, most lignocellulosic biomass is incinerated for energy. Typically, agricultural waste is left to decompose in the fields, causing problems such as greenhouse gas release, attracting insects and rodents, and impacting soil fertility. This study aims to valorise nonedible tomato waste with no commercial value in Additive Manufacturing (AM) to create sustainable, cost-effective and added-value PLA composites. Fused Filament Fabrication (FFF) filaments with 5 and 10 wt.% tomato stem powder (TSP) were developed, and 3D-printed specimens were tested. Mechanical testing showed consistent tensile properties with 5% TSP addition, while flexural strength decreased, possibly due to void formation. Dynamic mechanical analysis (DMA) indicated changes in storage modulus and damping factor with TSP addition. Notably, the composites exhibited antioxidant activity, increasing with higher TSP content. These findings underscore the potential of agricultural waste utilization in FFF, offering insights into greener waste management practices and addressing challenges in mechanical performance and material compatibility. This research highlights the viability of integrating agricultural waste into filament-based AM, contributing to sustainable agricultural practices and promoting circular economy initiatives.

4.
Materials (Basel) ; 16(21)2023 Oct 29.
Article de Anglais | MEDLINE | ID: mdl-37959534

RÉSUMÉ

Composite 3D printing filaments integrating antimicrobial nanoparticles offer inherent microbial resistance, mitigating contamination and infections. Developing antimicrobial 3D-printed plastics is crucial for tailoring medical solutions, such as implants, and cutting costs when compared with metal options. Furthermore, hospital sustainability can be enhanced via on-demand 3D printing of medical tools. A PLA-based filament incorporating 5% TiO2 nanoparticles and 2% Joncryl as a chain extender was formulated to offer antimicrobial properties. Comparative analysis encompassed PLA 2% Joncryl filament and a TiO2 coating for 3D-printed specimens, evaluating mechanical and thermal properties, as well as wettability and antimicrobial characteristics. The antibacterial capability of the filaments was explored after 3D printing against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), as well as Gram-negative Escherichia coli (E. coli, ATCC 25922), and the filaments with 5 wt.% embedded TiO2 were found to reduce the viability of both bacteria. This research aims to provide the optimal approach for antimicrobial and medical 3D printing outcomes.

5.
Micromachines (Basel) ; 14(10)2023 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-37893266

RÉSUMÉ

In the last decade, there has been a notable advancement in diverse bioreactor types catering to various applications. However, conventional bioreactors often exhibit bulkiness and high costs, making them less accessible to many researchers and laboratory facilities. In light of these challenges, this article aims to introduce and evaluate the development of a do-it-yourself (DIY) 3D printed smart bioreactor, offering a cost-effective and user-friendly solution for the proliferation of various bioentities, including bacteria and human organoids, among others. The customized bioreactor was fabricated under an ergonomic design and assembled with 3D printed mechanical parts combined with electronic components, under 3D printed housing. The 3D printed parts were designed using SOLIDWORKS® CAD Software (2022 SP2.0 Professional version) and fabricated via the fused filament fabrication (FFF) technique. All parts were 3D printed with acrylonitrile butadiene styrene (ABS) in order for the bioreactor to be used under sterile conditions. The printed low-cost bioreactor integrates Internet-of-things (IoT) functionalities, since it provides the operator with the ability to change its operational parameters (sampling frequency, rotor speed, and duty cycle) remotely, via a user-friendly developed mobile application and to save the user history locally on the device. Using this bioreactor, which is adjusted to a standard commercial 12-well plate, proof of concept of a successful operation of the bioreactor during a 2-day culture of Escherichia coli bacteria (Mach1 strain) is presented. This study paves the way for more in-depth investigation of bacterial and various biological-entity growth cultures, utilizing 3D printing technology to create customized low-cost bioreactors.

6.
Micromachines (Basel) ; 14(9)2023 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-37763861

RÉSUMÉ

The agricultural sector faces numerous challenges in ensuring optimal soil health and environmental conditions for sustainable crop production. Traditional soil analysis methods are often time-consuming and labor-intensive, and provide limited real-time data, making it challenging for farmers to make informed decisions. In recent years, Internet of Things (IoT) technology has emerged as a promising solution to address these challenges by enabling efficient and automated soil analysis and environmental monitoring. This paper presents a 3D-printed IoT-based Agro-toolbox, designed for comprehensive soil analysis and environmental monitoring in the agricultural domain. The toolbox integrates various sensors for both soil and environmental measurements. By deploying this tool across fields, farmers can continuously monitor key soil parameters, including pH levels, moisture content, and temperature. Additionally, environmental factors such as ambient temperature, humidity, intensity of visible light, and barometric pressure can be monitored to assess the overall health of agricultural ecosystems. To evaluate the effectiveness of the Agro-toolbox, a case study was conducted in an aquaponics floating system with rocket, and benchmarking was performed using commercial tools that integrate sensors for soil temperature, moisture, and pH levels, as well as for air temperature, humidity, and intensity of visible light. The results showed that the Agro-toolbox had an acceptable error percentage, and it can be useful for agricultural applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE