Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Small ; : e2404249, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953366

RÉSUMÉ

The photoelectrochemical (PEC) method has the potential to be an attractive route for converting and storing solar energy as chemical bonds. In this study, a maximum NH3 production yield of 1.01 g L-1 with a solar-to-ammonia conversion efficiency of 8.17% through the photovoltaic electrocatalytic (PV-EC) nitrate (NO3 -) reduction reaction (NO3 -RR) is achieved, using silicon heterojunction solar cell technology. Additionally, the effect of tuning the operation potential of the PV-EC system and its influence on product selectivity are systematically investigated. By using this unique external resistance tuning approach in the PV-EC system, ammonia production through nitrate reduction performance from 96 to 360 mg L-1 is enhanced, a four-fold increase. Furthermore, the NH3 is extracted as NH4Cl powder using acid stripping, which is essential for storing chemical energy. This work demonstrates the possibility of tuning product selectivity in PV-EC systems, with prospects toward pilot scale on value-added product synthesis.

2.
Small ; : e2400913, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38847569

RÉSUMÉ

Electrochemical carbon dioxide reduction reaction (ECO2RR) is a promising approach to synthesize fuels and value-added chemical feedstocks while reducing atmospheric CO2 levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-Bi2O3) are develpoed by a solvothermal method. The resulting Ce@S-Bi2O3 electrocatalyst shows a maximum formate Faradaic efficiency (FE) of 92.5% and a current density of 42.09 mA cm-2 at -1.16 V versus RHE using a traditional H-cell system. Furthermore, using a three-chamber gas diffusion electrode (GDE) reactor, a maximum formate FE of 85% is achieved in a wide range of applied potentials (-0.86 to -1.36 V vs RHE) using Ce@S-Bi2O3. The density functional theory (DFT) results show that doping of Ce and S in Bi2O3 enhances formate production by weakening the OH* and H* species. Moreover, DFT calculations reveal that *OCHO is a dominant pathway on Ce@S-Bi2O3 that leads to efficient formate production. This study opens up new avenues for designing metal and element-doped electrocatalysts to improve the catalytic activity and selectivity for ECO2RR.

3.
ACS Nano ; 16(3): 3906-3916, 2022 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-35253442

RÉSUMÉ

Design and development of an efficient, nonprecious catalyst with structural features and functionality necessary for driving the hydrogen evolution reaction (HER) in an alkaline medium remain a formidable challenge. At the root of the functional limitation is the inability to tune the active catalytic sites while overcoming the poor reaction kinetics observed under basic conditions. Herein, we report a facile approach to enable the selective design of an electrochemically efficient cobalt phosphide oxide composite catalyst on carbon cloth (CoP-CoxOy/CC), with good activity and durability toward HER in alkaline medium (η10 = -43 mV). Theoretical studies revealed that the redistribution of electrons at laterally dispersed Co phosphide/oxide interfaces gives rise to a synergistic effect in the heterostructured composite, by which various Co oxide phases initiate the dissociation of the alkaline water molecule. Meanwhile, the highly active CoP further facilitates the adsorption-desorption process of water electrolysis, leading to extremely high HER activity.

4.
Adv Mater ; 33(18): e2100812, 2021 May.
Article de Anglais | MEDLINE | ID: mdl-33792108

RÉSUMÉ

The photoelectrochemical (PEC) approach is attractive as a promising route for the nitrogen reduction reaction (NRR) toward ammonia (NH3 ) synthesis. However, the challenges in synergistic management of optical, electrical, and catalytic properties have limited the efficiency of PEC NRR devices. Herein, to enhance light-harvesting, carrier separation/transport, and the catalytic reactions, a concept of decoupling light-harvesting and electrocatalysis by employing a cascade n+ np+ -Si photocathode is implemented. Such a decoupling design not only abolishes the parasitic light blocking but also concurrently improves the optical and electrical properties of the n+ np+ -Si photocathode without compromising the efficiency. Experimental and density functional theory studies reveal that the porous architecture and N-vacancies promote N2 adsorption of the Au/porous carbon nitride (PCN) catalyst. Impressively, an n+ np+ -Si photocathode integrating the Au/PCN catalyst exhibits an outstanding PEC NRR performance with maximum Faradaic efficiency (FE) of 61.8% and NH3 production yield of 13.8 µg h-1 cm-2 at -0.10 V versus reversible hydrogen electrode (RHE), which is the highest FE at low applied potential ever reported for the PEC NRR.

5.
Inorg Chem ; 60(2): 614-622, 2021 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-33236627

RÉSUMÉ

Water oxidation is a primary step in natural as well as artificial photosynthesis to convert renewable solar energy into chemical energy/fuels. Electrocatalytic water oxidation to evolve O2, utilizing suitable low-cost catalysts and renewable electricity, is of fundamental importance considering contemporary energy and environmental issues, yet it is kinetically challenging owing to the complex multiproton/electron transfer processes. Herein, we report the first cobalt-based pincer catalyst for catalytic water oxidation at neutral pH with high efficiency under electrochemical conditions. Most importantly, ligand (pseudo)aromaticity is identified to play an important role during electrocatalysis. A significant potential jump (∼300 mV) was achieved toward a lower positive value when the aromatized cobalt complex was transformed into a (pseudo)dearomatized cobalt species. The dearomatized species catalyzes the water oxidation reaction to evolve oxygen at a much lower overpotential (∼340 mV) on the basis of the onset potential (at a current density of 0.5 mA/cm2) of catalysis at pH 10.5, outperforming other Co-based molecular catalysts reported to date. These observations may provide a new strategy for the judicious design of earth-abundant transition-metal-based water oxidation catalysts.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...