Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2023 Nov 06.
Article de Anglais | MEDLINE | ID: mdl-37986740

RÉSUMÉ

Large scale monitoring of neural activity at the single unit level can be achieved via electrophysiological recording using implanted microelectrodes. While neuroscience researchers have widely employed chronically implanted electrode-based interfaces for this purpose, a commonly encountered limitation is loss of highly resolved signals arising from immunological response over time. Next generation electrode-based interfaces improve longitudinal signal quality using the strategy of stabilizing the device-tissue interface with microelectrode arrays constructed from soft and flexible polymer materials. The limited availability of such polymer microelectrode arrays has restricted access to a small number of researchers able to build their own custom devices or who have developed specific collaborations with engineering researchers who can produce them. Here, a new technology resource model is introduced that seeks to widely increase access to polymer microelectrode arrays by the neuroscience research community. The Polymer Implantable Electrode (PIE) Foundry provides custom and standardized polymer microelectrode arrays as well as training and guidance on best-practices for implantation and chronic experiments.

2.
Front Neurosci ; 15: 616063, 2021.
Article de Anglais | MEDLINE | ID: mdl-33716647

RÉSUMÉ

Same-electrode stimulation and recording with high spatial resolution, signal quality, and power efficiency is highly desirable in neuroscience and neural engineering. High spatial resolution and signal-to-noise ratio is necessary for obtaining unitary activities and delivering focal stimulations. Power efficiency is critical for battery-operated implantable neural interfaces. This study demonstrates the capability of recording single units as well as evoked potentials in response to a wide range of electrochemically safe stimulation pulses through high-resolution microelectrodes coated with co-deposition of Pt-Ir. It also compares signal-to-noise ratio, single unit activity, and power efficiencies between Pt-Ir coated and uncoated microelectrodes. To enable stimulation and recording with the same microelectrodes, microelectrode arrays were treated with electrodeposited platinum-iridium coating (EPIC) and tested in the CA1 cell body layer of rat hippocampi. The electrodes' ability to (1) inject a large range of electrochemically reversable stimulation pulses to the tissue, and (2) record evoked potentials and single unit activities were quantitively assessed over an acute time period. Compared to uncoated electrodes, EPIC electrodes recorded signals with higher signal-to-noise ratios (coated: 9.77 ± 1.95 dB; uncoated: 1.95 ± 0.40 dB) and generated lower voltages (coated: 100 mV; uncoated: 650 mV) for a given stimulus (5 µA). The improved performance corresponded to lower energy consumptions and electrochemically safe stimulation above 5 µA (>0.38 mC/cm2), which enabled elicitation of field excitatory post synaptic potentials and population spikes. Spontaneous single unit activities were also modulated by varying stimulation intensities and monitored through the same electrodes. This work represents an example of stimulation and recording single unit activities from the same microelectrode, which provides a powerful tool for monitoring and manipulating neural circuits at the single neuron level.

3.
J Neural Eng ; 17(3): 036012, 2020 06 22.
Article de Anglais | MEDLINE | ID: mdl-32408281

RÉSUMÉ

OBJECTIVE: To evaluate the electrochemical properties, biological response, and surface characterization of an electrodeposited Platinum-Iridium (Pt-Ir) electrode coating on cochlear implants subjected to chronic stimulation in vivo. APPROACH: Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured bench-top before and after implant and in vivo. Coated Pt-Ir and uncoated Pt electrode arrays were implanted into cochlea of normal hearing rats and stimulated for ∼4 h d, 5 d week-1 for 5 weeks at levels within the normal clinical range. Neural function was monitored using electrically-evoked auditory brainstem responses. After explant, the electrode surfaces were assessed, and cochleae examined histologically. MAIN RESULTS: When measured on bench-top before and after stimulation, Pt-Ir coated electrodes had significantly lower VT impedance (p < 0.001) and significantly higher CSC (p < 0.001) and CIL (p < 0.001) compared to uncoated Pt electrodes. In vivo, the CSC and CIL of Pt-Ir were significantly higher than Pt throughout the implantation period (p= 0.047 and p< 0.001, respectively); however, the VT impedance (p= 0.3) was not. There was no difference in foreign body response between material cohorts, although cochleae implanted with coated electrodes contained small deposits of Pt-Ir. There was no evidence of increased neural loss or loss of neural function in either group. Surface examination revealed no Pt corrosion on any electrodes. SIGNIFICANCE: Electrodeposited Pt-Ir electrodes demonstrated significant improvements in electrochemical performance on the bench-top and in vivo compared to uncoated Pt. Neural function and tissue response to Pt-Ir electrodes were not different from uncoated Pt, despite small deposits of Pt-Ir in the tissue capsule. Electrodeposited Pt-Ir coatings offer promise as an improved electrode coating for active neural prostheses.


Sujet(s)
Implantation cochléaire , Implants cochléaires , Animaux , Électrodes , Iridium , Platine , Rats
4.
J Neural Eng ; 17(2): 026037, 2020 04 29.
Article de Anglais | MEDLINE | ID: mdl-32209743

RÉSUMÉ

OBJECTIVE: Carbon fiber electrodes may enable better long-term brain implants, minimizing the tissue response commonly seen with silicon-based electrodes. The small diameter fiber may enable high-channel count brain-machine interfaces capable of reproducing dexterous movements. Past carbon fiber electrodes exhibited both high fidelity single unit recordings and a healthy neuronal population immediately adjacent to the recording site. However, the recording yield of our carbon fiber arrays chronically implanted in the brain typically hovered around 30%, for previously unknown reasons. In this paper we investigated fabrication process modifications aimed at increasing recording yield and longevity. APPROACH: We tested a new cutting method using a 532nm laser against traditional scissor methods for the creation of the electrode recording site. We verified the efficacy of improved recording sites with impedance measurements and in vivo array recording yield. Additionally, we tested potentially longer-lasting coating alternatives to PEDOT:pTS, including PtIr and oxygen plasma etching. New coatings were evaluated with accelerated soak testing and acute recording. MAIN RESULTS: We found that the laser created a consistent, sustainable 257 ± 13.8 µm2 electrode with low 1 kHz impedance (19 ± 4 kΩ with PEDOT:pTS) and low fiber-to-fiber variability. The PEDOT:pTS coated laser cut fibers were found to have high recording yield in acute (97% > 100 µV pp , N = 34 fibers) and chronic (84% > 100 µV pp , day 7; 71% > 100 µV pp , day 63, N = 45 fibers) settings. The laser cut recording sites were good platforms for the PtIr coating and oxygen plasma etching, slowing the increase in 1 kHz impedance compared to PEDOT:pTS in an accelerated soak test. SIGNIFICANCE: We have found that laser cut carbon fibers have a high recording yield that can be maintained for over two months in vivo and that alternative coatings perform better than PEDOT:pTS in accelerated aging tests. This work provides evidence to support carbon fiber arrays as a viable approach to high-density, clinically-feasible brain-machine interfaces.


Sujet(s)
Neurones , Silicium , Fibre de carbone , Électrodes implantées , Microélectrodes
5.
J Neural Eng ; 17(1): 016015, 2019 12 23.
Article de Anglais | MEDLINE | ID: mdl-31652427

RÉSUMÉ

OBJECTIVE: To systematically compare the in vitro electrochemical and mechanical properties of several electrode coatings that have been reported to increase the efficacy of medical bionics devices by increasing the amount of charge that can be delivered safely to the target neural tissue. APPROACH: Smooth platinum (Pt) ring and disc electrodes were coated with reduced graphene oxide, conductive hydrogel, or electrodeposited Pt-Ir. Electrodes with coatings were compared with uncoated smooth Pt electrodes before and after an in vitro accelerated aging protocol. The various coatings were compared mechanically using the adhesion-by-tape test. Electrodes were stimulated in saline for 24 hours/day 7 days/week for 21 d at 85 °C (1.6-year equivalence) at a constant charge density of 200 µC/cm2/phase. Electrodes were graded on surface corrosion and trace analysis of Pt in the electrolyte after aging. Electrochemical measurements performed before, during, and after aging included electrochemical impedance spectroscopy, cyclic voltammetry, and charge injection limit and impedance from voltage transient recordings. MAIN RESULTS: All three coatings adhered well to smooth Pt and exhibited electrochemical advantage over smooth Pt electrodes prior to aging. After aging, graphene coated electrodes displayed a stimulation-induced increase in impedance and reduction in the charge injection limit (p  < 0.001), alongside extensive corrosion and release of Pt into the electrolyte. In contrast, both conductive hydrogel and Pt-Ir coated electrodes had smaller impedances and larger charge injection limits than smooth Pt electrodes (p  < 0.001) following aging regardless of the stimulus level and with little evidence of corrosion or Pt dissolution. SIGNIFICANCE: This study rigorously tested the mechanical and electrochemical performance of electrode coatings in vitro and provided suitable candidates for future in vivo testing.


Sujet(s)
Matériaux revêtus, biocompatibles/composition chimique , Techniques électrochimiques/méthodes , Galvanoplastie/méthodes , Graphite/composition chimique , Hydrogels/composition chimique , Platine/composition chimique , Implants cochléaires , Stimulation électrique/instrumentation , Stimulation électrique/méthodes , Techniques électrochimiques/instrumentation , Électrodes implantées
6.
Biomaterials ; 205: 120-132, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-30925400

RÉSUMÉ

Reliable single unit neuron recordings from chronically implanted microelectrode arrays (MEAs) are essential tools in the field of neural engineering. However, following implantation, MEAs undergo a foreign body response that functionally isolates them from the brain and reduces the useful longevity of the array. We tested a novel electrodeposited platinum-iridium coating (EPIC) on penetrating recording MEAs to determine if it improved recording performance. We chronically implanted the arrays in rats and used electrophysiological and histological measurements to compare quantitatively the single unit recording performance of coated vs. uncoated electrodes over a 12-week period. The coated electrodes had substantially lower impedance at 1 kHz and reduced noise, increased signal-to-noise ratio, and increased number of discernible units per electrode as compared to uncoated electrodes. Post-mortem immunohistochemistry showed no significant differences in the immune response between coated and uncoated electrodes. Overall, the EPIC arrays provided superior recording performance than uncoated arrays, likely due to lower electrode impedance and reduced noise.


Sujet(s)
Matériaux revêtus, biocompatibles/composition chimique , Électrodes implantées , Galvanoplastie , Iridium/composition chimique , Platine/composition chimique , Animaux , Impédance électrique , Femelle , Microélectrodes , Rat Sprague-Dawley
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3133-3138, 2016 Aug.
Article de Anglais | MEDLINE | ID: mdl-28324979

RÉSUMÉ

Retinitis Pigmentosa (RP) is a degenerative disease of the retina that leads to vision loss. Retinal prostheses are being developed in order to restore functional vision in patients suffering from RP. We conducted in-vivo experiments in order to identify strategies to efficiently stimulate the retina. We electrically stimulated the retina and measured electrically evoked potentials (EERs) from the superior colliculus of rats. We compared the strength of EERs when voltage-controlled and current-controlled pulses of varying pulse width and charge levels were applied to the retina. In addition to comparing EER strength, we evaluated improvement in power efficiency afforded by a high surface area platinum-iridium material. Voltage-controlled pulses were more efficient than current-controlled pulses when the pulses have a short duration (<; 1 ms) and current-controlled pulses were more efficient than voltage-controlled pulses when the pulse width was greater than 1 ms. The high surface area platinum-iridium stimulation electrode consumed power significantly lower than a standard platinum-iridium electrode.


Sujet(s)
Stimulation électrique , Rétine/physiologie , Rétinite pigmentaire/thérapie , Prothèse visuelle , Animaux , Modèles animaux de maladie humaine , Potentiels évoqués , Rats
8.
Adv Mater ; 27(10): 1731-7, 2015 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-25641076

RÉSUMÉ

Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems.


Sujet(s)
Électrothérapie/instrumentation , Électrodes , Coeur , Alliages/composition chimique , Animaux , Élastomères , Impédance électrique , Électrothérapie/méthodes , Conception d'appareillage , Fractales , Coeur/physiologie , Coeur/physiopathologie , Iridium/composition chimique , Test de matériaux , Microscopie électronique à balayage , Nanostructures/composition chimique , Imagerie optique , Composés du platine/composition chimique , Polystyrènes/composition chimique , Lapins , Siloxane élastomère , Composés de l'argent/composition chimique , Analyse spectrale , Thiophènes/composition chimique , Titane/composition chimique
9.
IEEE Trans Biomed Eng ; 61(8): 2254-63, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-25051544

RÉSUMÉ

Rectangular pulses applied to disk electrodes result in high current density at the edges of the disk, which can lead to electrode corrosion and tissue damage. We explored a method for reducing current density and corrosion, by varying the leading edge of the current pulse. Finite-element modeling and mathematical analysis were used to predict an optimal waveform that reduces current density at the edge while also maintaining short pulse duration. An approximation of the optimized waveform was implemented experimentally and applied to platinum disk electrodes. Surface analysis using energy-dispersive spectroscopy showed significant reduction of corrosion on the periphery of these electrodes after pulsing, compared to those pulsed with the control rectangular waveform.


Sujet(s)
Stimulation électrique/instrumentation , Électrodes implantées , Conception d'appareillage , Analyse de panne d'appareillage/méthodes , Algorithmes , Corrosion , Analyse des éléments finis , Platine , Traitement du signal assisté par ordinateur , Spectrométrie d'émission X
10.
Article de Anglais | MEDLINE | ID: mdl-23365995

RÉSUMÉ

An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity.


Sujet(s)
Iridium/composition chimique , Nanofils/composition chimique , Nanofils/ultrastructure , Platine/composition chimique , Conductivité électrique , Galvanoplastie/méthodes , Nanoparticules métalliques/composition chimique , Nanoparticules métalliques/ultrastructure , Microscopie électronique à balayage , Microscopie électronique à transmission , Microtechnologie/instrumentation , Nanotechnologie , Emballage de produit/instrumentation , Emballage de produit/méthodes
11.
Article de Anglais | MEDLINE | ID: mdl-22254972

RÉSUMÉ

High-surface area platinum-iridium alloys were electrodeposited by on Pt and Au microelectrodes using a potential sweep technique. Detailed investigations of the structure and morphology and the electrochemical properties of the electrodeposited Pt-Ir alloy coatings were performed. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for the determination of the surface morphology and the chemical composition of the Pt-Ir coatings, respectively. The elemental analysis by EDS showed a nearly 60-40% Pt-Ir composition of the coatings. The electrochemical properties of the Pt-Ir coatings were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV and EIS measurements revealed that the Pt-Ir coated electrodes exhibit significantly increased charge storage capacity and real surface area compared to uncoated Pt electrodes. Charge injection experiments of the Pt-Ir coated microelectrodes revealed low potential excursions, indicating high charge injection capabilities within safe potential limits.


Sujet(s)
Alliages , Électrodes , Iridium/composition chimique , Platine/composition chimique , Microscopie électronique à balayage , Propriétés de surface
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...