Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Reproduction ; 165(4): 395-405, 2023 04 01.
Article de Anglais | MEDLINE | ID: mdl-36757313

RÉSUMÉ

In brief: Seminal nerve growth factor induces ovulation in camelids by influencing the secretion of gonadotrophin-releasing hormone (GnRH) into the portal vessels of the pituitary gland. We show that the nerve growth factor-induced release of GnRH is not mediated directly through interaction with hypothalamic neurons. Abstract: Ovulation in camelids is triggered by seminal nerve growth factor (NGF). The mechanism of action of NGF appears to occur via the central nervous system. In this study, we tested the hypothesis that NGF acts in the hypothalamus to induce GnRH release. To determine if NGF-induced ovulation is associated with a rise in NGF concentrations in the cerebrospinal fluid (CSF), llamas were i) mated with an urethrostomized male, ii) mated with intact male, or given intrauterine iii) seminal plasma or i.v.) saline (Experiment 1). To characterize the luteinizing hormone (LH) response after central vs peripheral administration, llamas were treated with saline (negative control) or NGF either by i.v. or intracerebroventricular (ICV) administration (Experiment 2). To determine the role of kisspeptin, the effect of ICV infusion of a kisspeptin receptor antagonist on NGF-induced LH secretion and ovulation was tested in llamas (Experiment 3). In Experiment 1, a surge in circulating concentrations of LH was detected only in llamas mated with an intact male and those given intrauterine seminal plasma, but no changes in CSF concentrations of NGF were detected. In Experiment 2, peripheral administration (i.v.) of NGF induced an LH surge and ovulation, whereas no response was detected after central (ICV) administration. In Experiment 3, the kisspeptin receptor antagonist had no effect on the LH response to NGF. In conclusion, results did not support the hypothesis that NGF-induced ovulation is mediated via a trans-synaptic pathway within the hypothalamus, but rather through a releasing effect on tanycytes at the median eminence.


Sujet(s)
Camélidés du Nouveau Monde , Facteur de croissance nerveuse , Femelle , Animaux , Mâle , Facteur de croissance nerveuse/pharmacologie , Progestérone , Camélidés du Nouveau Monde/métabolisme , Kisspeptines/pharmacologie , Kisspeptines/métabolisme , Hormone lutéinisante/métabolisme , Hormone de libération des gonadotrophines/métabolisme , Hypothalamus/métabolisme
2.
Reproduction ; 162(2): 171-179, 2021 07 08.
Article de Anglais | MEDLINE | ID: mdl-34128825

RÉSUMÉ

To elucidate the mechanism by which nerve growth factor (NGF) influences the LH secretory pathway in camelids, a series of experiments were done to determine the involvement of the hypothalamus (Experiment 1), the role of GnRH neurons (Experiment 2), and the effect of progesterone (Experiment 3) on the NGF-induced LH surge and ovulation in llamas. In Experiment 1, the declining phase of the NGF-induced LH surge was used to determine if the decline is a result of pituitary depletion or hypothalamic unresponsiveness. Female llamas were treated with NGF and, 7 h later, assigned to three groups and given a second dose of NGF (n = 5), a dose of GnRH (n = 5), or saline (n = 6). The LH response was attenuated after the second dose of NGF vs GnRH. In Experiment 2, Fos expression (marker of neuronal activation) in GnRH neurons was examined in the hypothalamus of llamas after NGF or saline treatment (n = 3 per group). Despite an LH surge in the NGF group but not in the saline group, no differences were detected between groups in Fos/GnRH co-expression. In Experiment 3, llamas in low-, medium-, and high-plasma progesterone groups (n = 4 per group) were treated with NGF. The NGF-induced LH surge did not differ among treatment groups. Results from the present study show that the induction of a preovulatory LH surge by NGF may be controlled by a novel pathway involving GnRH neuro-terminals downstream of the hypothalamus and is independent of progesterone influence.


Sujet(s)
Hormone de libération des gonadotrophines/pharmacologie , Hypothalamus/métabolisme , Hormone lutéinisante/métabolisme , Facteur de croissance nerveuse/pharmacologie , Hypophyse/métabolisme , Progestérone/métabolisme , Animaux , Camélidés du Nouveau Monde , Femelle , Hypothalamus/effets des médicaments et des substances chimiques , Hypophyse/effets des médicaments et des substances chimiques
3.
Theriogenology ; 164: 100-104, 2021 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-33582512

RÉSUMÉ

In the female camelid, systemic administration of NGF induces a preovulatory LH surge that results in ovulation, but the effects of seminal NGF in the male are unknown. In the present study, we tested the hypothesis that the LH-releasing pathway of NGF is present in male camelids. In Experiment 1, male llamas and alpacas were treated with NGF or GnRH (n = 2 llamas and 3 alpacas) and blood samples were collected from 1 h before to 3 h after treatment. Plasma LH concentrations increased after treatment in a surge-like fashion in both GnRH- and NGF-treated groups, but concentrations reached a maximum 2.5 times higher and remained elevated for at least 2 h longer in the NGF-treated group (treatment-by-time interaction, P = 0.01). In Experiment 2, we evaluated the LH and testosterone response to NGF vs saline treatment (n = 3 llamas and 3 alpacas). The LH response to NGF was similar to that in Experiment 1, and plasma testosterone concentrations were higher in the NGF group than in the saline group at 2, 4 and 6 h after treatment (P < 0.05). Results support the hypothesis that the LH-releasing pathway for NGF exists in male South American camelids. The LH response to NGF sustained circulating testosterone concentrations in llamas, suggesting a moderate role of NGF in testosterone secretion.


Sujet(s)
Camélidés du Nouveau Monde , Sperme , Animaux , Femelle , Hormone de libération des gonadotrophines , Hormone lutéinisante , Mâle , Facteur de croissance nerveuse , Ovulation
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE