Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
1.
Biochemistry ; 56(48): 6329-6342, 2017 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-29099587

RÉSUMÉ

Protein-protein interactions are essential for biological function, but structures of protein-protein complexes are difficult to obtain experimentally. To derive the protein complex of the DNA-repair enzyme human uracil-DNA-glycosylase (hUNG) with its protein inhibitor (UGI), we combined rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). Computational docking of the unbound protein structures provides a list of possible three-dimensional models of the complex; DXMS identifies solvent-protected protein residues. DXMS showed that unbound hUNG is compactly folded, but unbound UGI is loosely packed. An increased level of solvent protection of hUNG in the complex was localized to four regions on the same face. The decrease in the number of incorporated deuterons was quantitatively interpreted as the minimum number of main-chain hUNG amides buried in the protein-protein interface. The level of deuteration of complexed UGI decreased throughout the protein chain, indicating both tighter packing and direct solvent protection by hUNG. Three UGI regions showing the greatest decreases were best interpreted leniently, requiring just one main-chain amide from each in the interface. Applying the DXMS constraints as filters to a list of docked complexes gave the correct complex as the largest favorable energy cluster. Thus, identification of approximate protein interfaces was sufficient to distinguish the protein complex. Surprisingly, incorporating the DXMS data as added favorable potentials in the docking calculation was less effective in finding the correct complex. The filtering method has greater flexibility, with the capability to test each constraint and enforce simultaneous contact by multiple regions, but with the caveat that the list from the unbiased docking must include correct complexes.


Sujet(s)
Antienzymes/métabolisme , Spectrométrie de masse/méthodes , Protéines virales/antagonistes et inhibiteurs , Protéines virales/métabolisme , Simulation numérique , Antienzymes/composition chimique , Modèles chimiques , Liaison aux protéines , Conformation des protéines , Protéines virales/composition chimique
2.
Adv Mater ; 28(38): 8405-8412, 2016 Oct.
Article de Anglais | MEDLINE | ID: mdl-27454809

RÉSUMÉ

Films from the cephalopod protein reflectin demonstrate multifaceted functionality as infrared camouflage coatings, proton transport media, and substrates for growth of neural stem cells. A detailed study of the in vitro formation, structural characteristics, and stimulus response of such films is presented. The reported observations hold implications for the design and development of advanced cephalopod-inspired functional materials.


Sujet(s)
Cephalopoda , Animaux , Cellules souches neurales , Protéines , Protons
3.
Nat Protoc ; 11(5): 905-19, 2016 May.
Article de Anglais | MEDLINE | ID: mdl-27077332

RÉSUMÉ

Computational docking can be used to predict bound conformations and free energies of binding for small-molecule ligands to macromolecular targets. Docking is widely used for the study of biomolecular interactions and mechanisms, and it is applied to structure-based drug design. The methods are fast enough to allow virtual screening of ligand libraries containing tens of thousands of compounds. This protocol covers the docking and virtual screening methods provided by the AutoDock suite of programs, including a basic docking of a drug molecule with an anticancer target, a virtual screen of this target with a small ligand library, docking with selective receptor flexibility, active site prediction and docking with explicit hydration. The entire protocol will require ∼5 h.


Sujet(s)
Évaluation préclinique de médicament/méthodes , Simulation de docking moléculaire , Protéines/composition chimique , Domaine catalytique , Conception de médicament , Ligands , Protéines/métabolisme , Logiciel , Relation structure-activité , Interface utilisateur
4.
Proteins ; 81(12): 2106-18, 2013 Dec.
Article de Anglais | MEDLINE | ID: mdl-23966176

RÉSUMÉ

Protein-DNA interactions are essential for many biological processes. X-ray crystallography can provide high-resolution structures, but protein-DNA complexes are difficult to crystallize and typically contain only small DNA fragments. Thus, there is a need for computational methods that can provide useful predictions to give insights into mechanisms and guide the design of new experiments. We used the program DOT, which performs an exhaustive, rigid-body search between two macromolecules, to investigate four diverse protein-DNA interactions. Here, we compare our computational results with subsequent experimental data on related systems. In all cases, the experimental data strongly supported our structural hypotheses from the docking calculations: a mechanism for weak, nonsequence-specific DNA binding by a transcription factor, a large DNA-binding footprint on the surface of the DNA-repair enzyme uracil-DNA glycosylase (UNG), viral and host DNA-binding sites on the catalytic domain of HIV integrase, and a three-DNA-contact model of the linker histone bound to the nucleosome. In the case of UNG, the experimental design was based on the DNA-binding surface found by docking, rather than the much smaller surface observed in the crystallographic structure. These comparisons demonstrate that the DOT electrostatic energy gives a good representation of the distinctive electrostatic properties of DNA and DNA-binding proteins. The large, favourably ranked clusters resulting from the dockings identify active sites, map out large DNA-binding sites, and reveal multiple DNA contacts with a protein. Thus, computational docking can not only help to identify protein-DNA interactions in the absence of a crystal structure, but also expand structural understanding beyond known crystallographic structures.


Sujet(s)
Protéines de liaison à l'ADN/composition chimique , Intégrase du VIH/composition chimique , Histone/composition chimique , Uracil-DNA glycosidase/composition chimique , Algorithmes , Sites de fixation , Cristallographie aux rayons X , ADN/composition chimique , Humains , Modèles moléculaires , Simulation de docking moléculaire , Liaison aux protéines , Thermodynamique
5.
J Comput Chem ; 34(20): 1743-58, 2013 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-23695987

RÉSUMÉ

Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here, we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate an infinitive complete list of favorable candidate configurations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome.


Sujet(s)
Biologie informatique , Simulation de docking moléculaire , Protéines/composition chimique , Logiciel , Algorithmes , Structures macromoléculaires/composition chimique , Électricité statique
6.
Nucleic Acids Res ; 40(13): 6070-81, 2012 Jul.
Article de Anglais | MEDLINE | ID: mdl-22492624

RÉSUMÉ

X-ray crystallography provides excellent structural data on protein-DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein-DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein-DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG-DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210-220 and 251-264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG-DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway.


Sujet(s)
Protéines de liaison à l'ADN/composition chimique , ADN/composition chimique , Uracil-DNA glycosidase/composition chimique , Algorithmes , Domaine catalytique , Biologie informatique/méthodes , Cristallographie aux rayons X , Mesure d'échange de deutérium , Spectrométrie de masse/méthodes , Modèles moléculaires
7.
Structure ; 20(1): 113-20, 2012 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-22244760

RÉSUMÉ

Classical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search. The protocol was validated on three test cases: a simulated system of antibody structures; and two experimentally based test cases: Tobacco mosaic virus, a rod-shaped virus; and Aquaporin Z, a bacterial membrane protein. We have shown that AFM-intermediate resolution topography and partial surface data are useful constraints for building macromolecular assemblies. The protocol is applicable to multicomponent structures connected in the polypeptide chain or as disjoint molecules. The approach effectively increases the resolution of AFM beyond topographical information down to atomic-detail structures.


Sujet(s)
Biologie informatique/méthodes , Microscopie à force atomique/méthodes , Modèles moléculaires , Structure tertiaire des protéines , Protéines/composition chimique , Aquaporines/composition chimique , Protéines Escherichia coli/composition chimique , Virus de la mosaïque du tabac/composition chimique
8.
J Biol Chem ; 286(37): 32638-50, 2011 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-21775435

RÉSUMÉ

The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational analyses to define the XLF-XRCC4 interactions. Crystal and solution structures plus mutations characterize alternating XRCC4 and XLF head domain interfaces forming parallel super-helical filaments. XLF Leu-115 ("Leu-lock") inserts into a hydrophobic pocket formed by XRCC4 Met-59, Met-61, Lys-65, Lys-99, Phe-106, and Leu-108 in synergy with pseudo-symmetric ß-zipper hydrogen bonds to drive specificity. XLF C terminus and DNA enhance parallel filament formation. Super-helical XLF-XRCC4 filaments form a positively charged channel to bind DNA and align ends for efficient ligation. Collective results reveal how human XLF and XRCC4 interact to bind DNA, suggest consequences of patient mutations, and support a unified molecular mechanism for XLF-XRCC4 stimulation of DNA ligation.


Sujet(s)
Cassures double-brin de l'ADN , Enzymes de réparation de l'ADN/composition chimique , Enzymes de réparation de l'ADN/métabolisme , Réparation de l'ADN/physiologie , Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/métabolisme , Lignée cellulaire , Cristallographie aux rayons X , ADN/composition chimique , ADN/génétique , ADN/métabolisme , Enzymes de réparation de l'ADN/génétique , Protéines de liaison à l'ADN/génétique , Humains , Liaison aux protéines/physiologie , Structure quaternaire des protéines , Structure secondaire des protéines
9.
Structure ; 16(1): 137-48, 2008 Jan.
Article de Anglais | MEDLINE | ID: mdl-18184591

RÉSUMÉ

The bacterial pathogen Vibrio cholerae uses toxin-coregulated pili (TCP) to colonize the human intestine, causing the severe diarrheal disease cholera. TCP are long, thin, flexible homopolymers of the TcpA subunit that self-associate to hold cells together in microcolonies and serve as the receptor for the cholera toxin phage. To better understand TCP's roles in pathogenesis, we characterized its structure using hydrogen/deuterium exchange mass spectrometry and computational modeling. We show that the pilin subunits are held together by tight packing of the N-terminal alpha helices, but loose packing of the C-terminal globular domains leaves substantial gaps on the filament surface. These gaps expose a glycine-rich, amphipathic segment of the N-terminal alpha-helix, contradicting the consensus view that this region is buried in the filament core. Our results explain extreme filament flexibility, suggest a molecular basis for pilus-pilus interactions, and reveal a previously unrecognized therapeutic target for V. cholerae and other enteric pathogens.


Sujet(s)
Toxines bactériennes/toxicité , Fimbriae bactériens/ultrastructure , Vibrio cholerae/ultrastructure , Séquence d'acides aminés , Toxines bactériennes/composition chimique , Choléra/microbiologie , Séquence conservée , Diarrhée/microbiologie , Fimbriae bactériens/composition chimique , Humains , Intestins/microbiologie , Modèles moléculaires , Données de séquences moléculaires , Conformation des protéines , Vibrio cholerae/pathogénicité
10.
PLoS Pathog ; 3(10): 1422-31, 2007 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-17922572

RÉSUMÉ

The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.


Sujet(s)
Vaccins anticharbonneux , Maladie du charbon/prévention et contrôle , Antitoxines/composition chimique , Antitoxines/métabolisme , Toxines bactériennes/antagonistes et inhibiteurs , Protéines membranaires/composition chimique , Protéines membranaires/métabolisme , Animaux , Antigènes bactériens/immunologie , Toxines bactériennes/immunologie , Protéines de capside/composition chimique , Protéines de capside/immunologie , Vecteurs génétiques , Iridoviridae/composition chimique , Iridoviridae/immunologie , Mâle , Protéines membranaires/immunologie , Microscopie électronique , Nanoparticules , Réaction de polymérisation en chaîne , Structure tertiaire des protéines , Rats , Rat Sprague-Dawley , Récepteurs peptidiques
12.
Mol Cell ; 23(5): 651-62, 2006 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-16949362

RÉSUMÉ

Type IV pili (T4P) are long, thin, flexible filaments on bacteria that undergo assembly-disassembly from inner membrane pilin subunits and exhibit astonishing multifunctionality. Neisseria gonorrhoeae (gonococcal or GC) T4P are prototypic virulence factors and immune targets for increasingly antibiotic-resistant human pathogens, yet detailed structures are unavailable for any T4P. Here, we determined a detailed experimental GC-T4P structure by quantitative fitting of a 2.3 A full-length pilin crystal structure into a 12.5 A resolution native GC-T4P reconstruction solved by cryo-electron microscopy (cryo-EM) and iterative helical real space reconstruction. Spiraling three-helix bundles form the filament core, anchor the globular heads, and provide strength and flexibility. Protruding hypervariable loops and posttranslational modifications in the globular head shield conserved functional residues in pronounced grooves, creating a surprisingly corrugated pilus surface. These results clarify T4P multifunctionality and assembly-disassembly while suggesting unified assembly mechanisms for T4P, archaeal flagella, and type II secretion system filaments.


Sujet(s)
Cryomicroscopie électronique , Fimbriae bactériens/métabolisme , Fimbriae bactériens/ultrastructure , Séquence d'acides aminés , Adhérence bactérienne/physiologie , Cristallographie aux rayons X , Protéines de fimbriae/composition chimique , Fimbriae bactériens/composition chimique , Humains , Modèles biologiques , Modèles moléculaires , Données de séquences moléculaires , Neisseria gonorrhoeae/immunologie , Maturation post-traductionnelle des protéines , Alignement de séquences
14.
Mol Cell ; 11(5): 1139-50, 2003 May.
Article de Anglais | MEDLINE | ID: mdl-12769840

RÉSUMÉ

Pilin assembly into type IV pili is required for virulence by bacterial pathogens that cause diseases such as cholera, pneumonia, gonorrhea, and meningitis. Crystal structures of soluble, N-terminally truncated pilin from Vibrio cholera toxin-coregulated pilus (TCP) and full-length PAK pilin from Pseudomonas aeruginosa reveal a novel TCP fold, yet a shared architecture for the type IV pilins. In each pilin subunit a conserved, extended, N-terminal alpha helix wrapped by beta strands anchors the structurally variable globular head. Inside the assembled pilus, characterized by cryo-electron microscopy and crystallography, the extended hydrophobic alpha helices make multisubunit contacts to provide mechanical strength and flexibility. Outside, distinct interactions of adaptable heads contribute surface variation for specificity of pilus function in antigenicity, motility, adhesion, and colony formation.


Sujet(s)
Protéines de fimbriae/métabolisme , Fimbriae bactériens/métabolisme , Fragments peptidiques/métabolisme , Pseudomonas aeruginosa/métabolisme , Vibrio cholerae/métabolisme , Séquence d'acides aminés/physiologie , Cristallographie aux rayons X , Protéines de fimbriae/ultrastructure , Fimbriae bactériens/ultrastructure , Microscopie électronique , Modèles moléculaires , Données de séquences moléculaires , Masse moléculaire , Fragments peptidiques/ultrastructure , Pliage des protéines , Structure secondaire des protéines/physiologie , Sous-unités de protéines/métabolisme , Pseudomonas aeruginosa/ultrastructure , Vibrio cholerae/ultrastructure
15.
Nucleic Acids Res ; 30(1): 379-82, 2002 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-11752342

RÉSUMÉ

The Metalloprotein Database and Browser (MDB; http://metallo.scripps.edu) at The Scripps Research Institute is a web-accessible resource for metalloprotein research. It offers the scientific community quantitative information on geometrical parameters of metal-binding sites in protein structures available from the Protein Data Bank (PDB). The MDB also offers analytical tools for the examination of trends or patterns in the indexed metal-binding sites. A user can perform interactive searches, metal-site structure visualization (via a Java applet), and analysis of the quantitative data by accessing the MDB through a web browser without requiring an external application or platform-dependent plugin. The MDB also has a non-interactive interface with which other web sites and network-aware applications can seamlessly incorporate data or statistical analysis results from metal-binding sites. The information contained in the MDB is periodically updated with automated algorithms that find and index metal sites from new protein structures released by the PDB.


Sujet(s)
Bases de données de protéines , Métalloprotéines/composition chimique , Algorithmes , Séquence d'acides aminés , Animaux , Sites de fixation , Infographie , Systèmes de gestion de bases de données , Mémorisation et recherche des informations , Internet , Ligands , Métalloprotéines/métabolisme , Métaux/métabolisme , Interface utilisateur
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE