Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Rep ; 10(1): 14881, 2020 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-32913199

RÉSUMÉ

Bose-Einstein condensation (BEC) of magnons is one of the few macroscopic quantum phenomena observable at room temperature. Due to the competition of the exchange and the magnetic dipole interactions, the minimum-energy magnon state is doubly degenerate and corresponds to two antiparallel non-zero wavevectors. Correspondingly, the room-temperature magnon BEC differs essentially from other condensates, since it takes place simultaneously at ± kmin. The degeneracy of BEC and interaction between its two components have significant impact on condensate properties. Phase locking of the two condensates causes formation of a standing wave of the condensate density and quantized vortices. Additionally, interaction between the two components is believed to be important for stabilization of the condensate with respect to a real-space collapse. Thus, the possibility to create a non-degenerate, single-component condensate is decisive for understanding of underlying physics of magnon BEC. Here, we experimentally demonstrate an approach, which allows one to accomplish this challenging task. We show that this can be achieved by using a separation of the two components of the degenerate condensate in the real space by applying a local pulsed magnetic field, which causes their motion in the opposite directions. Thus, after a certain delay, the two clouds corresponding to different components become well separated in the real space. We find that motion of the clouds can be described well based on the peculiarities of magnon dispersion characteristics. Additionally, we show that, during the motion, the condensate cloud harvests non-condensed magnons, which results in a partial compensation of condensate depletion.

2.
Nat Commun ; 11(1): 1691, 2020 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-32245978

RÉSUMÉ

Bose-Einstein condensation of magnons is one of few macroscopic quantum phenomena observed at room temperature. Since its discovery, it became an object of intense research, which led to the observation of many exciting phenomena such as quantized vortices, second sound, and Bogolyubov waves. However, it remained unclear what physical mechanisms can be responsible for the spatial stability of the magnon condensate. Indeed, since magnons are believed to exhibit attractive interaction, it is generally expected that the condensate is unstable with respect to the real-space collapse, contrarily to experimental findings. Here, we provide direct experimental evidence that magnons in a condensate exhibit repulsive interaction resulting in the condensate stabilization and propose a mechanism, which is responsible for this interaction. Our experimental conclusions are additionally supported by the theoretical model based on the Gross-Pitaevskii equation. Our findings solve a long-standing problem, providing a new insight into the physics of magnon Bose-Einstein condensates.

3.
Phys Rev Lett ; 112(15): 157201, 2014 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-24785067

RÉSUMÉ

The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed.

4.
Phys Rev Lett ; 108(10): 107203, 2012 Mar 09.
Article de Anglais | MEDLINE | ID: mdl-22463449

RÉSUMÉ

We show that helical magnets exhibit a nontrivial type of domain wall consisting of a regular array of vortex lines, except for a few distinguished orientations. This result follows from topological consideration and is independent of the microscopic models. We used simple models to calculate the shape and energetics of vortex walls in centrosymmetric and noncentrosymmetric crystals. Vortices are strongly anisotropic, deviating from the conventional Berezinskii-Kosterlitz-Thouless form. The width of the domain walls depend only weakly on the magnetic anisotropy, in contrast to ferromagnets and antiferromagnets. We show that vortex walls can be driven by external currents and in multiferroics also by electric fields.

5.
Phys Rev Lett ; 105(26): 267001, 2010 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-21231705

RÉSUMÉ

The zero temperature phase diagram of Cooper pairs exposed to disorder and a magnetic field is determined theoretically from a variational approach. Four distinct phases are found: a Bose and a Fermi insulating, a metallic, and a superconducting phase, respectively. The results explain the giant negative magnetoresistance found experimentally in In-O, TiN, Be and high-T(c) materials.

6.
Phys Rev Lett ; 100(6): 060402, 2008 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-18352445

RÉSUMÉ

A Bose-Einstein condensate in an external potential consisting of a superposition of a harmonic and a random potential is considered theoretically. From a semiquantitative analysis we find the size, shape, and excitation energy as a function of the disorder strength. For positive scattering length and sufficiently strong disorder the condensate decays into fragments each of the size of the Larkin length L. This state is stable over a large range of particle numbers. The frequency of the breathing mode scales as 1/L(2). For negative scattering length a condensate of size L may exist as a metastable state. These findings are generalized to anisotropic traps.

7.
Phys Rev Lett ; 90(6): 067004, 2003 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-12633320

RÉSUMÉ

We argue that, in channels cut out of anisotropic single crystal superconductors and narrow on the scale of London penetration depth, the persistent current must cause the transverse phase difference provided the current does not point in any of the principal crystal directions. The difference is proportional to the current value and depends on the anisotropy parameter, on the current direction relative to the crystal, and on the transverse channel dimension. An idea on how to measure the transverse phase is proposed.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE