Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Toxicol Pathol ; 23(4): 213-34, 2010 Dec.
Article de Anglais | MEDLINE | ID: mdl-22272032

RÉSUMÉ

To illustrate the process of addressing adverse preclinical findings (APFs) as outlined in the first part of this review, a number of cases with unexpected APF in toxicity studies with drug candidates is discussed in this second part. The emphasis is on risk characterization, especially regarding the mode of action (MoA), and risk evaluation regarding relevance for man. While severe APFs such as retinal toxicity may turn out to be of little human relevance, minor findings particularly in early toxicity studies, such as vasculitis, may later pose a real problem. Rodents are imperfect models for endocrine APFs, non-rodents for human cardiac effects. Liver and kidney toxicities are frequent, but they can often be monitored in man and do not necessarily result in early termination of drug candidates. Novel findings such as the unusual lesions in the gastrointestinal tract and the bones presented in this review can be difficult to explain. It will be shown that well known issues such as phospholipidosis and carcinogenicity by agonists of peroxisome proliferator-activated receptors (PPAR) need to be evaluated on a case-by-case basis. The latter is of particular interest because the new PPAR α and dual α/γ agonists resulted in a change of the safety paradigm established with the older PPAR α agonists. General toxicologists and pathologists need some understanding of the principles of genotoxicity and reproductive toxicity testing. Both types of preclinical toxicities are major APF and clinical monitoring is difficult, generally leading to permanent use restrictions.

2.
J Toxicol Pathol ; 23(4): 189-211, 2010 Dec.
Article de Anglais | MEDLINE | ID: mdl-22272031

RÉSUMÉ

Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...