Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Pest Manag Sci ; 77(7): 3333-3340, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-33763949

RÉSUMÉ

BACKGROUND: Citrus variegated chlorosis (CVC) is an important citrus disease caused by the sharpshooter-transmitted bacterium Xylella fastidiosa subsp. pauca. Information about the efficacy of its disease management is bounded to either inoculum reduction or vector control. This study aimed to assess the role of different frequencies of roguing of symptomatic trees combined with different chemical control programs for the sharpshooters on CVC temporal progress. The experimental area was set up in October 2005 and had a 3 × 3 factorial design. Symptomatic tree removal intervals were every 28, 56, and 112 days to May 2012. Vector control treatments were no control, program A (PA), and program B (PB). Contact insecticides were sprayed every 28 (PA) or 14 (PB) days. Trees within both programs were treated with systemic and foliar insecticides to October 2008. After this, systemic insecticides were discontinued and only foliar treatments were applied. The number of diseased trees and the sharpshooter population were assessed to April 2015. RESULTS: Detection of the first symptomatic trees was similar for all treatments and occurred, on average, in month 50 after planting. Sharpshooter population and cumulative disease incidence were similar for all roguing intervals and between vector control programs, differing in plots with no control. We observed a reduction over 85% in disease incidence for both PA and PB compared with no control. CONCLUSION: These results support systematic control of sharpshooters as an efficient strategy for reducing CVC progress. © 2021 Society of Chemical Industry.


Sujet(s)
Anémie hypochrome , Citrus , Incidence , Maladies des plantes/prévention et contrôle , Xylella
2.
Plant Dis ; 105(8): 2097-2105, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-33373290

RÉSUMÉ

The management of citrus canker, caused by Xanthomonas citri subsp. citri, has been widely studied in endemic areas because of the importance of the disease in several citrus-producing countries. A set of control measures is well established, but no study has investigated the efficiency of each measure individually and their combination for disease suppression. This study comprised a 3-year field study to assess the relative contribution of three measures for the control of citrus canker and reduction of crop losses. Windbreak (Wb), copper sprays (Cu), and leafminer control (Lc) were assessed in eight different combinations in a split-split plot design. The orchard was composed of 'Valencia' sweet orange trees grafted onto 'Rangpur' lime. Casuarina cunninghamiana trees were used as Wb. Cu and Lc sprays were performed every 21 days throughout the year. Individually, Cu showed the highest contribution for canker control, followed by Wb. Lc had no effect on reducing citrus canker. Wb+Cu showed the highest efficiency for control of the disease. This combination reduced the incidence of diseased trees by approximately 60%, and the incidence of diseased leaves and fruit by ≥90% and increased the yield in 2.0- to 2.6-fold in comparison with the unmanaged plots. Cu sprays were important for reducing disease incidence and crop losses, whereas Wb had an additional contribution in minimizing the incidence of cankered, non-marketable fruit. The results indicated that the adoption of these measures of control may depend on the characteristics of the orchard and destination of the production.


Sujet(s)
Citrus sinensis , Citrus , Cuivre , Maladies des plantes/prévention et contrôle , Feuilles de plante
3.
Plant Dis ; 101(5): 766-773, 2017 May.
Article de Anglais | MEDLINE | ID: mdl-30678575

RÉSUMÉ

Quinone-outside inhibitor (QoI) fungicides are effective tools for preharvest control of brown rot of stone fruit. These fungicides have a very specific site of action so the risk of resistance selection is high. The sensitivity of Monilinia fructicola (G. Winter) Honey isolates to azoxystrobin (QoI) was investigated in 143 isolates collected between 2002 and 2011 from four Brazilian states in orchards with different frequencies of fungicide use (0 to 6 fungicides sprays/season). Sensitivity of the isolates to azoxystrobin was determined in vitro, by inhibition of mycelial growth and spore germination on fungicide-amended media or ex vivo by pathogen inoculation in untreated or treated fruit with azoxystrobin. Potential mutations in codons 143, 137, and 129 of the cytochrome b (Cyt b) gene and the occurrence of an intron immediately after codon 143 were analyzed in a subpopulation of the isolates. The M. fructicola population of São Paulo State was less sensitive to the fungicide than the population from the states of Paraná, Santa Catarina, and Rio Grande do Sul. The low sensitivity of the isolates was confirmed also by comparing to the sensitivity of the baseline isolates. Mutations in G143A, F129L, and G137R in Cyt b gene were not found. In addition, 58 isolates tested showed an intron after codon 143 in Cyt b gene. Our results indicate that other mechanisms of selection for low sensitivity to QoI fungicides should be investigated.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE