Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
AoB Plants ; 10(2): ply017, 2018 Apr.
Article de Anglais | MEDLINE | ID: mdl-29644027

RÉSUMÉ

Positive interactions in plant communities are under-reported in subtropical systems most likely because they are not identified as stressful environments. However, environmental factors or disturbance can limit plant growth in any system and lead to stressful conditions. For instance, salinity and low nutrient and water availability generate a gradient of stressful conditions in coastal systems depending on distance to shore. In a tropical coastal system in SE Brazil, we aimed to assess whether Guapira opposita, a shrub common in restinga environments, acted as nurse involved in ecological succession and which factors influenced its facilitation process. We sampled perennial species above 10 cm in height under the canopy of 35 G. opposita individuals and in neighbouring open areas. Shrub height, canopy area and distance to freshwater bodies were measured in the field, and distance to the ocean was obtained from aerial images. In addition, we measured the distance to the closest forest patch as a potential source of seeds. Plant abundance and species richness were higher under the canopy of G. opposita than in open areas. Facilitation by G. opposita was mainly determined by shrub height, which had a positive relationship with woody and bromeliads abundance and species richness while there was no relationship with the other factors. Overall, our data evidence that tropical environments may be highly stressful for plants and that nurse species play a key role in the regeneration of restinga environments, where their presence is critical to maintain ecosystem diversity and function.

2.
Ecol Lett ; 17(2): 193-202, 2014 Feb.
Article de Anglais | MEDLINE | ID: mdl-24238015

RÉSUMÉ

Interactions among species determine local-scale diversity, but local interactions are thought to have minor effects at larger scales. However, quantitative comparisons of the importance of biotic interactions relative to other drivers are rarely made at larger scales. Using a data set spanning 78 sites and five continents, we assessed the relative importance of biotic interactions and climate in determining plant diversity in alpine ecosystems dominated by nurse-plant cushion species. Climate variables related with water balance showed the highest correlation with richness at the global scale. Strikingly, although the effect of cushion species on diversity was lower than that of climate, its contribution was still substantial. In particular, cushion species enhanced species richness more in systems with inherently impoverished local diversity. Nurse species appear to act as a 'safety net' sustaining diversity under harsh conditions, demonstrating that climate and species interactions should be integrated when predicting future biodiversity effects of climate change.


Sujet(s)
Biodiversité , Climat , Modèles biologiques , Plantes , Acclimatation , Altitude , Asie , Europe , Modèles linéaires , Nouvelle-Zélande , Amérique du Nord , Amérique du Sud
3.
Oecologia ; 163(4): 855-65, 2010 Aug.
Article de Anglais | MEDLINE | ID: mdl-20364271

RÉSUMÉ

Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.


Sujet(s)
Asteraceae/physiologie , Fabaceae/physiologie , Modèles biologiques , Racines de plante/physiologie , Transpiration des plantes , Chili , Climat , Écosystème , Sol/analyse , Espagne , Eau/analyse , Eau/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE