Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-38732895

RÉSUMÉ

UAV communications have seen a rapid rise in the last few years. The drone class of UAV has particularly become more widespread around the world, and illicit behavior using drones has become a problem. Therefore, localization, tracking, and even taking control of drones have also gained interest. Knowing the frequency of a target signal, its position can be determined (as the angle of arrival with respect to a fixed receiver point) using radio frequency-based localization techniques. One such technique is represented by the subspace-based algorithms that offer highly accurate results. This paper presents the implementation of the MUSIC algorithm on an SDR-based system using a uniform circular antenna array and its experimental evaluation in relevant outdoor environments for drone localization. The results show the capability of the system to indicate the AoA of the target signal. The results are compared with the actual direction computed from the log files of the drone application and validated with a professional direction-finding solution (i.e., Narda SignalShark equipped with the automatic direction-finding antenna).

2.
Sensors (Basel) ; 23(3)2023 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-36772405

RÉSUMÉ

In the context of the Eu:CROPIS mission requirements, this paper aims to test and validate an intra-spacecraft wireless transmission carried between two SpW-to-UWB Wireless Interface Units (WIUs). The WIUs are designed to replace the on-board SpaceWire (SpW) connections of a spacecraft network. The novelty of this solution resides in prototyping and testing proprietary TRL6 WIUs for the implementation of both PDHU and CDHU units, which constitute a spacecraft network. The validation test scenarios employed in this paper were designed under the Eu:CROPIS mission system requirements as defined by the WiSAT-3 European Space Agency (ESA)-funded project. The SpW-to-UWB WIUs run a custom-built ISA100 over an IEEE 802.15.4 UWB PHY layer communication stack. The WIUs are evaluated based on four mission-specific performance test scenarios: (1) the link setup test, (2) the end-to-end delay test, (3) the maximum data rate test and (4) the housekeeping test. The validation test scenarios of the WIUs are carried out with the use of STAR-Dundee SpW-capable equipment. The test results demonstrate the reliability of the deployed SpW-to-UWB WIUs devices for UWB wireless communications carried out within a space shuttle. The SpW data were successfully transmitted across the intra-spacecraft wireless network in all experimental tests. The technology can be considered to be at the maturity level TRL6 (functionality demonstrated in relevant environment) for LEO missions.

3.
Sensors (Basel) ; 22(16)2022 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-36016020

RÉSUMÉ

Economic and social development is hardly influenced by electric power production and consumption. In this context of the energy supply pressure, energy production and consumption must be monitored and controlled in an intelligent way. Due to the availability of large data measurements, prediction algorithms based on neural networks are widely used in accurate power prediction. Firstly, the particularity of our work is represented by the size of the dataset consisting of 4 years of continuous real-time data measurements collected from the CETATEA photovoltaic power plant, a research site for renewable energies located in Cluj-Napoca, Romania. Secondly, the high granularity of the dataset with more than 4.2 million unified production and consumption power values recorded every 30 s guarantees the overall prediction accuracy of the system. Performance metrics used to evaluate the prediction accuracy are the mean bias error, the mean square error, the convergence time of the prediction system, the test performance, and the train mean performance. Test results indicate that the predicted unified electric power production and consumption closely resembles the unified electric power measured values.


Sujet(s)
, Énergie renouvelable , Algorithmes , Électricité , Roumanie
4.
Sensors (Basel) ; 22(6)2022 Mar 09.
Article de Anglais | MEDLINE | ID: mdl-35336278

RÉSUMÉ

In industrial wireless sensors networks (IWSNs), the sensor lifetime predictability is critical for ensuring continuous system availability, cost efficiency and suitability for safety applications. When deployed in a real-world dynamic and centralised network, the sensor lifetime is highly dependent on the network topology, deployment configuration and application requirements. (In the absence of an energy-aware mechanism, there is no guarantee for the sensor lifetime). This research defines a conceptual model for enhancing the energy predictability and efficiency of IWSNs. A particularization of this model is the predictive energy-aware routing (PEAR) solution that assures network lifetime predictability through energy-aware routing, energy balancing and profiling. The PEAR solution considers the requirements and constraints of the industrial ISA100.11a communication standard and the VR950 IIoT Gateway hardware platform. The results demonstrate the PEAR ability to ensure predictable energy consumption for one or multiple network clusters. The PEAR solution is capable of intracluster energy balancing, reducing the overconsumption 10.4 times after 210 routing changes as well as intercluster energy balancing, increasing the cluster lifetime 2.3 times on average and up to 3.2 times, while reducing the average consumption by 23.6%. The PEAR solution validates the feasibility and effectiveness of the energy-aware conceptual indicating its suitability within IWSNs having real world applications and requirements.


Sujet(s)
Réseaux de communication entre ordinateurs , Technologie sans fil , Algorithmes , Modèles théoriques , Phénomènes physiques
5.
Sensors (Basel) ; 21(12)2021 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-34207382

RÉSUMÉ

This paper presents a comprehensive study on monopulse secondary surveillance radar (MSSR) coverage. The design and radiation pattern of an improved MSSR antenna is presented herein, highlighting the horizontal and vertical factors of the SUM beam. Moreover, the impact of other determinant factors, such as signal reflection and atmospheric refraction, on the radar coverage were assessed in this work. Real positioning measurement data and coverage simulations were used to support and exemplify theoretical findings.


Sujet(s)
Radar
6.
Sensors (Basel) ; 21(11)2021 May 21.
Article de Anglais | MEDLINE | ID: mdl-34064237

RÉSUMÉ

During the planning, design, and optimization of an industrial wireless sensor network (IWSN), the proposed solutions need to be validated and evaluated. To reduce the time and expenses, highly accurate simulators can be used for these tasks. This paper presents the development and experimental validation of an ISA100.11a simulation model for industrial wireless sensor networks (IWSN). To achieve high simulation accuracy, the ISA100.11a software stack running on two types of certified devices (i.e., an all-in-one gateway and a field device) is integrated with the ns-3 simulator. The behavior of IWSNs is analyzed in four different types of test scenarios: (1) through simulation using the proposed ISA100.11a simulation model, (2) on an experimental testbed using ISA100.11a certified devices, (3) in a Gateway-in-the-loop Hardware-in-the-loop (HIL) scenario, and (4) in a Node-in-the-loop HIL scenario. Moreover, the scalability of the proposed simulation model is evaluated. Several metrics related to the timing of events and communication statistics are used to evaluate the behavior and performance of the tested IWSNs. The results analysis demonstrates the potential of the proposed model to accurately predict IWSN behavior.

7.
Sensors (Basel) ; 20(18)2020 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-32971795

RÉSUMÉ

Due to the known issue that the ranging in the 802.15.4™-2015 standard is prone to external attacks, the enhanced impulse radio (EiR), a new amendment still under development, advances the secure ranging protocol by encryption of physical layer (PHY) timestamp sequence using the AES-128 encryption algorithm. This new amendment brings many changes and enhancements which affect the impulse-radio ultra-wideband (IR-UWB) ranging procedures. The timestamp detection is the base factor in the accuracy of range estimation and inherently in the localization precision. This paper analyses the key parts of PHY which have a great contribution in timestamp estimation precision, particularly: UWB pulse, channel sounding and timestamp estimation using ciphered sequence and frequency selective fading. Unlike EiR, where the UWB pulse is defined in the time domain, in this article, the UWB pulse is synthesized from the power spectral density mask, and it is shown that the use of the entire allocated spectrum results in a decrease in risetime, an increase in pulse amplitude, and an attenuation of lateral lobes. The paper proposes a random spreading of the scrambled timestamp sequence (STS), resulting in an improvement in timestamp estimation by the attenuation lateral lobes of the correlation. The timestamp estimation in the noisy channels with non-line-of-sight and multipath propagation is achieved by cross-correlation of the received STS with the locally generated replica of STS. The propagation in the UWB channel with frequency selective fading results in small errors in the timestamp detection.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE