Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Ecotoxicol Environ Saf ; 279: 116474, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38772144

RÉSUMÉ

Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.


Sujet(s)
Anthraquinones , Oxydoréduction , Peroxydes , Rheum , Anthraquinones/composition chimique , Rheum/composition chimique , Peroxydes/composition chimique , Spectrométrie de masse en tandem , Sulfites/composition chimique , Concentration en ions d'hydrogène , Composés du fer III/composition chimique , Température
2.
Phytochem Anal ; 2024 May 13.
Article de Anglais | MEDLINE | ID: mdl-38740517

RÉSUMÉ

INTRODUCTION: Sulfur-fumigation of Paeoniae Radix Alba (PRA) could induce the chemical transformation of its bioactive component paeoniflorin into a sulfur-containing derivative paeoniflorin sulfite, and thus alter the quality, bioactivities, pharmacokinetics, and toxicities of PRA. However, how sulfur-fumigated PRA (S-PRA) affects the quality of PRA-containing complex preparations has not been intensively evaluated. OBJECTIVES: We intend to evaluate the influence of S-PRA on the overall quality of three kinds of Si-Wu-Tang (SWT) formulations, i.e., decoction (SWT-D), granule (SWT-G), and mixture (SWT-M). MATERIAL AND METHODS: An UPLC-DAD multi-components quantification method was used to compare the transfer rates of paeoniflorin sulfite and other 10 bioactive components between S-PRA-containing and NS-PRA-containing SWT formulations. An UPLC-QTOF-MS/MS-based target metabolomics approach was applied to explore the differential sulfur-containing derivatives in S-PRA-containing SWT formulations. RESULTS: The transfer rates of paeoniflorin sulfite in three S-PRA-containing SWT formulations were all higher than 100%. Moreover, S-PRA also increased the transfer rate of 5-hydroxymethylfurfural, 1,2,3,4,6-O-pentagalloylglucose, whereas decreased that of paeoniflorin, albiflorin, and ferulic acid in three SWT formulations. Six pinane monoterpene glucoside sulfites originally identified in S-PRA, were also detectable in three S-PRA-containing SWT formulations. In addition, seven phenolic acid sulfites including (3Z)-6-sulfite-ligustilide, (3E)-6-sulfite-ligustilide, 6,8-disulfite-ligustilide, ferulic acid sulfite, neochlorogenic acid sulfite, chlorogenic acid sulfite, and angelicide sulfite (or isomer) were newly identified in these three S-PRA-containing formulations. CONCLUSION: S-PRA could differentially affect the transfer rate of paeoniflorin sulfite and other bioactive components during the preparation of three SWT formulations and subsequently the overall quality thereof.

3.
Food Chem ; 448: 139112, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38569404

RÉSUMÉ

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Sujet(s)
Fumigation , Ginsénosides , Panax , Contrôle de qualité , Soufre , Ginsénosides/composition chimique , Ginsénosides/analyse , Panax/composition chimique , Soufre/composition chimique , Sulfites/composition chimique , Sulfites/analyse , Métaux/composition chimique , Métaux/analyse , Extraits de plantes/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...