Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Allergy Clin Immunol ; 152(4): 887-898, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37271320

RÉSUMÉ

BACKGROUND: Expression quantitative trait methylation (eQTM) analyses uncover associations between DNA methylation markers and gene expression. Most eQTM analyses of complex diseases have focused on cis-eQTM pairs (within 1 megabase). OBJECTIVES: This study sought to identify cis- and trans-methylation markers associated with gene expression in airway epithelium from youth with and without atopic asthma. METHODS: In this study, the investigators conducted both cis- and trans-eQTM analyses in nasal (airway) epithelial samples from 158 Puerto Rican youth with atopic asthma and 100 control subjects without atopy or asthma. The investigators then attempted to replicate their findings in nasal epithelial samples from 2 studies of children, while also examining whether their results in nasal epithelium overlap with those from an eQTM analysis in white blood cells from the Puerto Rican subjects. RESULTS: This study identified 9,108 cis-eQTM pairs and 2,131,500 trans-eQTM pairs. Trans-associations were significantly enriched for transcription factor and microRNA target genes. Furthermore, significant cytosine-phosphate-guanine sites (CpGs) were differentially methylated in atopic asthma and significant genes were enriched for genes differentially expressed in atopic asthma. In this study, 50.7% to 62.6% of cis- and trans-eQTM pairs identified in Puerto Rican youth were replicated in 2 smaller cohorts at false discovery rate-adjusted P < .1. Replicated genes in the trans-eQTM analysis included biologically plausible asthma-susceptibility genes (eg, HDC, NLRP3, ITGAE, CDH26, and CST1) and are enriched in immune pathways. CONCLUSIONS: Studying both cis- and trans-epigenetic regulation of airway epithelial gene expression can identify potential causal and regulatory pathways or networks for childhood asthma. Trans-eQTM CpGs may regulate gene expression in airway epithelium through effects on transcription factor and microRNA target genes.


Sujet(s)
Asthme , microARN , Enfant , Adolescent , Humains , Transcriptome , Épigenèse génétique , Asthme/métabolisme , Méthylation de l'ADN , Épithélium/métabolisme , Marqueurs génétiques , Muqueuse nasale/métabolisme , Facteurs de transcription/génétique , microARN/génétique , microARN/métabolisme
2.
Pediatr Crit Care Med ; 23(12): 968-979, 2022 12 01.
Article de Anglais | MEDLINE | ID: mdl-36178701

RÉSUMÉ

OBJECTIVES: Interest in using bedside C-reactive protein (CRP) and ferritin levels to identify patients with hyperinflammatory sepsis who might benefit from anti-inflammatory therapies has piqued with the COVID-19 pandemic experience. Our first objective was to identify patterns in CRP and ferritin trajectory among critically ill pediatric sepsis patients. We then examined the association between these different groups of patients in their inflammatory cytokine responses, systemic inflammation, and mortality risks. DATA SOURCES: A prospective, observational cohort study. STUDY SELECTION: Children with sepsis and organ failure in nine pediatric intensive care units in the United States. DATA EXTRACTION: Two hundred and fifty-five children were enrolled. Five distinct clinical multi-trajectory groups were identified. Plasma CRP (mg/dL), ferritin (ng/mL), and 31 cytokine levels were measured at two timepoints during sepsis (median Day 2 and Day 5). Group-based multi-trajectory models (GBMTM) identified groups of children with distinct patterns of CRP and ferritin. DATA SYNTHESIS: Group 1 had normal CRP and ferritin levels ( n = 8; 0% mortality); Group 2 had high CRP levels that became normal, with normal ferritin levels throughout ( n = 80; 5% mortality); Group 3 had high ferritin levels alone ( n = 16; 6% mortality); Group 4 had very high CRP levels, and high ferritin levels ( n = 121; 11% mortality); and Group 5 had very high CRP and very high ferritin levels ( n = 30; 40% mortality). Cytokine responses differed across the five groups, with ferritin levels correlated with macrophage inflammatory protein 1α levels and CRP levels reflective of many cytokines. CONCLUSIONS: Bedside CRP and ferritin levels can be used together to distinguish groups of children with sepsis who have different systemic inflammation cytokine responses and mortality risks. These data suggest future potential value in personalized clinical trials with specific targets for anti-inflammatory therapies.


Sujet(s)
COVID-19 , Sepsie , Enfant , Humains , Protéine C-réactive/métabolisme , Études prospectives , Pandémies , Marqueurs biologiques , Ferritines , Inflammation , Cytokines/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE