Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.058
Filtrer
1.
Environ Int ; 190: 108867, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38968833

RÉSUMÉ

Organotin compounds (OTs) are endocrine disruptors that induce imposex in hundreds of gastropods, but little is known about their underlying molecular mechanisms. This study aimed to investigate the endocrine toxicity and molecular responses to tributyltin (TBT) and triphenyltin (TPT) exposure in the whelk Reishia clavigera, which often serves as a biomonitor for OT contamination. Over a 120-day exposure to environmentally relevant concentrations of TBT (1000 ng L-1) and TPT (500 ng L-1), we observed a significant increase in penis length in both male and female whelks. Notably, TPT exhibited a stronger potency in inducing pseudo-penis development and female sterility, even at a half dose of TBT. Bioaccumulation analysis also revealed higher persistence and accumulation of TPT in whelk tissues compared to TBT. Differential expression analysis identified a substantial number of differentially expressed genes (DEGs), with TPT exposure eliciting more DEGs than TBT. Our results demonstrated that OTs induced xenobiotic metabolism and metabolic dysregulation in the digestive gland, impaired multiple cellular functions and triggered neurotoxicity in the nervous system, and disrupted lipid homeostasis and oxidative stress in the gonads. Furthermore, imposex was possibly associated with disturbances in retinoic acid metabolism, nuclear receptor signaling, and neuropeptide activity. When compared to TBT, TPT exhibited a more pronounced endocrine-disrupting effect, attributable to its higher bioaccumulation and substantial interruption of transcriptional regulation, OT detoxification, and biosynthesis of retinoic acids in R. clavigera. Our results, therefore, highlight the importance of considering the differences in bioaccumulation and molecular toxicity between TBT and TPT in future risk assessments of these contaminants. Overall, our study provided molecular insights into the toxicity and transcriptome profiles in R. clavigera exposed to TBT and TPT, shedding light on the endocrine-disrupting effects and reproductive impairment in female gastropods.

2.
World J Psychiatry ; 14(6): 838-847, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38984342

RÉSUMÉ

BACKGROUND: Older adults are at high risk of femoral neck fractures (FNFs). Elderly patients face and adapt to significant psychological burdens, resulting in different degrees of psychological stress response. Total hip replacement is the preferred treatment for FNF in elderly patients; however, some patients have poor postoperative prognoses, and the underlying mechanism is unknown. We speculated that the postoperative prognosis of elderly patients with FNF may be related to preoperative psychological stress. AIM: To explore the relationship between preoperative psychological stress and the short-term prognosis of elderly patients with FNF. METHODS: In this retrospective analysis, the baseline data, preoperative 90-item Symptom Checklist score, and Harris score within 6 months of surgery of 120 elderly patients with FNF who underwent total hip arthroplasty were collected. We analyzed the indicators of poor short-term postoperative prognosis and the ability of the indicators to predict poor prognosis and compared the correlation between the indicators and the Harris score. RESULTS: Anxiety, depression, garden classification of FNF, cause of fracture, FNF reduction quality, and length of hospital stay were independent influencing factors for poor short-term postoperative prognoses in elderly patients with FNF (P < 0.05). The areas under the curve for anxiety, depression, and length of hospital stay were 0.742, 0.854, and 0.749, respectively. The sensitivities of anxiety, depression, garden classification of FNF, and prediction of the cause of fracture were 0.857, 0.786, 0.821, and 0.821, respectively. The specificities of depression, FNF quality reduction, and length of hospital stay were the highest at 0.880, 0.783, and 0.761, respectively. Anxiety, depression, and somatization scores correlated moderately with Harris scores (r = -0.523, -0.625, and -0.554; all P < 0.001). CONCLUSION: Preoperative anxiety, depression, and somatization are correlated with poor short-term prognosis in elderly patients with FNF and warrant consideration.

3.
Plants (Basel) ; 13(13)2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38999713

RÉSUMÉ

Detailed anatomical features of bark are used and interpreted in plant taxonomy, phylogenetics, and other areas of plant science. However, the delicate nature of bark cells, combined with the difficulty of obtaining high-quality sections and reliable data, limits the potential for utilizing and processing bark. In this study, the anatomical structure of the bark of 10 Quercus species growing in Yunnan Province, China, was characterized in detail. The results indicate that the anatomical features of the barks of 10 Quercus spp. show a certain degree of consistency. Specifically, sieve tubes are distributed in solitary elements or in small groups, mostly as compound sieve plates containing 2-8 sieve areas, suggesting that Quercus spp. may occupy a conservative evolutionary position. Additionally, for the first time, this study reports the presence of simple sieve plates in the sieve tube elements of Quercus phloem. Each sieve tube element has a companion cell on one side. The companion cell strands contain 2-7 cells. Axial parenchyma is diffuse, with parenchyma strands typically consisting of 4-7 cells; druses are present within chambered crystalliferous cells. Phloem rays are of two distinct sizes and often exhibit dilatation and sclerification, and the ray composition consists of procumbent cells. Sclerenchyma is composed of fibers and sclereids, both of which contain prismatic crystals. Most of the fibers are gelatinous fibers, which are distributed in discontinuous tangential bands of about five cells in width. Sclereids appear in clusters. The presence of sclerenchyma provides mechanical support to the bark, reducing the collapse of the phloem. Periderm usually consists of around 10-30 layers of phellem, and Quercus acutissima and Q. variabilis can reach dozens or hundreds layers. The phelloderm typically consists of from two to five layers, with Q. variabilis having up to ten or more layers. The filling tissue of lenticels in all Quercus species is nonstratified (homogeneous) and largely nonsuberized. Overall, this study enriches our comprehension of Quercus bark anatomy, elucidating evolutionary patterns, functional adaptations, and ecological ramifications within this significant botanical genus.

4.
Article de Anglais | MEDLINE | ID: mdl-38958208

RÉSUMÉ

The cell membrane separates the intracellular compartment from the extracellular environment, constraining exogenous molecules to enter the cell. Conventional electroporation typically employs high-voltage and short-duration pulses to facilitate the transmembrane transport of molecules impermeable to the membrane under natural conditions by creating temporary hydrophilic pores on the membrane. Electroporation not only enables the entry of exogenous molecules but also directs the intracellular distribution of the electric field. Recent advancements have markedly enhanced the efficiency of intracellular molecule delivery, achieved through the utilization of microstructures, microelectrodes, and surface modifications. However, little attention is paid to regulating the motion of molecules during and after passing through the membrane to improve delivery efficiency, resulting in an unsatisfactory delivery efficiency and high dose demand. Here, we proposed the strategy of regulating the motion of charged molecules during the delivery process by progressive electroporation (PEP), utilizing modulated electric fields. Efficient delivery of charged molecules with an expanded distribution and increased accumulation by PEP was demonstrated through numerical simulations and experimental results. The dose demand can be reduced by 10-40% depending on the size and charge of the molecules. We confirmed the safety of PEP for intracellular delivery in both short and long terms through cytotoxicity assays and transcriptome analysis. Overall, this work not only reveals the mechanism and effectiveness of PEP-enhanced intracellular delivery of charged molecules but also suggests the potential integration of field manipulation of molecular motion with surface modification techniques for biomedical applications such as cell engineering and sensitive cellular monitoring.

5.
Appl Opt ; 63(12): 3228-3236, 2024 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-38856471

RÉSUMÉ

Due to its numerous advantages such as high gain and low operating bias, the silicon photomultiplier (SiPM) holds great potential in LiDAR applications. However, it is more jittery at weak echoes and more sensitive to ambient light, making its ranging performance at low signal-to-noise ratios (SNRs) severely deteriorated. To enhance the ranging performance of SiPM LiDAR under low SNR, a novel echo processing method, to the best of our knowledge, was proposed based on the statistical property of SiPM responses and validated under relatively intensive sunlight (>50k l x) using a self-developed LiDAR system. At the same time, laser pulse width modulation and multi-pulse laser emission are used in ranging experiments to maximize the advantages of this method. It has shown that increasing the laser pulse width within a certain range can improve ranging performance, and that emitting multiple laser pulses improves ranging performance more significantly. Utilizing a three-pulse laser with a peak power of only 3.2 W, a target 122 m away was ranged with a precision of 6.53 cm with only five accumulations.

6.
Inorg Chem ; 63(24): 11459-11469, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38842950

RÉSUMÉ

The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.

7.
J Hazard Mater ; 475: 134869, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38870857

RÉSUMÉ

Photoreduction of highly toxic U(VI) to less toxic U(IV) is crucial for mitigating radioactive contamination. Herein, a CoWO4/TpDD p-n heterojunction is synthesized, with TpDD serving as the n-type semiconductor substrate and CoWO4 as the p-type semiconductor grown in situ on its surface. The Fermi energy difference between TpDD and CoWO4 provides the electrochemical potential for charge-hole separation. Moreover, the Coulombic forces from the distinct carrier types between the two materials synergistically facilitate the transfer of electrons and holes. Hence, an internal electric field directed from TpDD to CoWO4 is established. Under photoexcitation conditions, charges and holes migrate efficiently along the curved band and internal electric field, further enhancing charge-hole separation. As a result, the removal capacity of CoWO4/TpDD increases from 515.2 mg/g in the dark to 1754.6 mg/g under light conditions. Thus, constructing a p-n heterojunction proves to be an effective strategy for remediating uranium-contaminated environments.

8.
bioRxiv ; 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38915596

RÉSUMÉ

Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of Gonadotropin-releasing Hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, Neurokinin B (NKB), and Dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17ß-estradiol (E2) reduces peptide expression but increases Vglut2 mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current and that contribute to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of Canonical Transient Receptor Potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When TRPC5 channels in Kiss1ARH neurons were deleted using CRISPR, the slow excitatory postsynaptic potential (sEPSP) was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of the Kiss1ARH neuron, suggesting that E2 modifies ionic conductances in Kiss1ARH neurons, enabling the transition from high frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.

9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(6): 611-618, 2024 Jun 15.
Article de Chinois | MEDLINE | ID: mdl-38926378

RÉSUMÉ

OBJECTIVES: To investigate the risk factors for bronchopulmonary dysplasia (BPD) in twin preterm infants with a gestational age of <34 weeks, and to provide a basis for early identification of BPD in twin preterm infants in clinical practice. METHODS: A retrospective analysis was performed for the twin preterm infants with a gestational age of <34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020. According to their conditions, they were divided into group A (both twins had BPD), group B (only one twin had BPD), and group C (neither twin had BPD). The risk factors for BPD in twin preterm infants were analyzed. Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins. RESULTS: A total of 904 pairs of twins with a gestational age of <34 weeks were included in this study. The multivariate logistic regression analysis showed that compared with group C, birth weight discordance of >25% between the twins was an independent risk factor for BPD in one of the twins (OR=3.370, 95%CI: 1.500-7.568, P<0.05), and high gestational age at birth was a protective factor against BPD (P<0.05). The conditional logistic regression analysis of group B showed that small-for-gestational-age (SGA) birth was an independent risk factor for BPD in individual twins (OR=5.017, 95%CI: 1.040-24.190, P<0.05). CONCLUSIONS: The development of BPD in twin preterm infants is associated with gestational age, birth weight discordance between the twins, and SGA birth.


Sujet(s)
Dysplasie bronchopulmonaire , Prématuré , Jumeaux , Humains , Dysplasie bronchopulmonaire/étiologie , Dysplasie bronchopulmonaire/épidémiologie , Facteurs de risque , Nouveau-né , Femelle , Études rétrospectives , Mâle , Âge gestationnel , Poids de naissance , Modèles logistiques
10.
Article de Anglais | MEDLINE | ID: mdl-38758153

RÉSUMÉ

Context: Gastric cancer (GC) is a common and life-threatening gastrointestinal malignancy. Although mucin 3A (MUC3A) is an essential oncogenic factor in several cancers, limited information is available on its expression in GC tissues and its impact on prognosis. Objective: The study aimed to characterize MUC3A in GC and to explore its potential involvement in regulating GC cells' behavior through the mammalian target of rapamycin (mTOR) signaling pathway. Design: The research team conducted a retrospective genetic analysis. Setting: The study took place as Huzhou Central Hospital, an Affiliated Central Hospital of Huzhou University in Huzhou, Zhejiang, China. Participants: Participants were 47 patients with GC who had received treatment at the department of general surgery at the hospital and who gave consent for the use of their tissue samples for the genetic analysis. Outcome Measures: The research team: (1) performed a differential analysis of MUC3A using GC and normal tissue samples purchased from the American Type Culture Collection; (2) investigated the exposure of cancer tissues to MUC3A and its effects in the tumor, node, metastasis (TNM) stages of GC, using the real-time quantitative polymerase chain reaction (rt-qPCR) method; (3) performed clone formation and conducted transwell assays by knocking down or overexpressing MUC3A to analyze the effects on the behavior of GC cells; and (4) assessed the content of related marker proteins and the phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) pathway proteins, using a Western blot analysis. Results: A high level of MUC3A existed in GC tissues, and it was associated with TNM staging. Silencing of the MUC3A inhibited GC-cell migration and proliferation, and MUC3A overexpression had the opposite effect. The addition of agonist M05856 restored the inhibitory effect of silencing MUC3A on GC cell proliferation and migration, suggesting that MUC3A regulates GC cells' behavior through the PI3K/Akt/mTOR pathway. Conclusions: MUC3A plays an oncogenic role in GC and may regulate GC cell behavior through the PI3K/Akt/mTOR pathway.

11.
Waste Manag ; 183: 191-198, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38761483

RÉSUMÉ

With the development of municipal solid waste incineration technologies, the disposal of fly ash has become a difficult problem that many countries need to solve. High-temperature melting is a promising disposal technology. Based on this, a new process for collaborative treatment of fly ash in metallurgical blast furnaces had been proposed in this study. To explore the impact of disposal of fly ash on blast furnace production, by simulating the high-temperature reducing environment of blast furnaces, the melting changes of water-washed fly ash (W-FA), and the effects of W-FA injection on coal combustion and products (slag, iron) composition were studied. The results showed that W-FA, as a flux, could be sprayed into the blast furnace separately or mixed with coal. But when injected along with coal, W-FA would suppress the combustion of coal. After melting, the removal rates of S, P, Cl, and Pb in W-FA were 21%, 30%, 86%, and 89%, respectively. The removal rates of K, Na, and Zn were close to 100%, and Cr was basically not removed. When the proportion of W-FA to coal was less than 1%, in addition to controlling the alkalinity of the slag, the impact of W-FA on the composition of iron and slag was minimal. The successful execution of this work will not only achieve the reduction, harmless and resourceful utilization of fly ash, but also save investment and operating costs of disposal facilities, with both environmental and social benefits.


Sujet(s)
Cendre de charbon , Incinération , Élimination des déchets , Déchets solides , Cendre de charbon/composition chimique , Incinération/méthodes , Déchets solides/analyse , Élimination des déchets/méthodes , Température élevée , Charbon
12.
Insect Sci ; 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38769889

RÉSUMÉ

Disruption of the circadian clock can affect starvation resistance, but the molecular mechanism is still unclear. Here, we found that starvation resistance was significantly reduced in the core gene BmPer deficient mutant silkworms (Per-/-), but the mutant's starvation resistance increased with larval age. Under natural physiological conditions, the weight of mutant 5th instar larvae was significantly increased compared to wild type, and the accumulation ability of triglycerides and glycogen in the fat bodies was upregulated. However, under starvation conditions, the weight consumption of mutant larvae was increased and cholesterol utilization was intensified. Transcriptome analysis showed that beta-oxidation was significantly upregulated under starvation conditions, fatty acid synthesis was inhibited, and the expression levels of genes related to mitochondrial function were significantly changed. Further investigations revealed that the redox balance, which is closely related to mitochondrial metabolism, was altered in the fat bodies, the antioxidant level was increased, and the pentose phosphate pathway, the source of reducing power in cells, was activated. Our findings suggest that one of the reasons for the increased energy burden observed in mutants is the need to maintain a more robust redox balance in metabolic tissues. This necessitates the diversion of more glucose into the pentose phosphate pathway to ensure an adequate supply of reducing power.

13.
Ecotoxicol Environ Saf ; 279: 116500, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38795416

RÉSUMÉ

Hexavalent chromium [Cr(VI)] is one of the most common environmental contaminants due to its tremendous industrial applications, but its effects and mechanism remain to be investigated. Our previous studies showed that Cr(VI) exposure caused malignant transformation and tumorigenesis. This study showed that glycolytic proteins HK2 and LDHA levels were statistically significant changed in blood samples of Cr(VI)-exposed workers and in Cr-T cells compared to the control subjects and parental cells. HK2 and LDHA knockdown inhibited cell proliferation and angiogenesis, and higher HK2 and LDHA expression levels are associated with advanced stages and poor prognosis of lung cancer. We found that miR-218 levels were significantly decreased and miR-218 directly targeted HK2 and LDHA for inhibiting their expression. Overexpression of miR-218 inhibited glucose consumption and lactate production in Cr-T cells. Further study found that miR-218 inhibited tumor growth and angiogenesis by decreasing HK2 and LDHA expression in vivo. MiR-218 levels were negatively correlated with HK2 and LDHA expression levels and cancer development in human lung and other cancers. These results demonstrated that miR-218/HK2/LDHA pathway is vital for regulating Cr(VI)-induced carcinogenesis and human cancer development.


Sujet(s)
Carcinogenèse , Chrome , Hexokinase , Tumeurs du poumon , microARN , Régulation positive , microARN/génétique , Humains , Chrome/toxicité , Hexokinase/génétique , Hexokinase/métabolisme , Carcinogenèse/induit chimiquement , Tumeurs du poumon/induit chimiquement , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/génétique , Pronostic , Animaux , Prolifération cellulaire/effets des médicaments et des substances chimiques , L-Lactate dehydrogenase/métabolisme , Exposition professionnelle/effets indésirables , Souris , Isoenzymes
14.
Nat Commun ; 15(1): 3017, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38589414

RÉSUMÉ

Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.

15.
Surg Endosc ; 38(6): 3126-3137, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38622226

RÉSUMÉ

BACKGROUND: The use of high-frequency electric welding technology for intestinal end-to-end anastomosis holds significant promise. Past studies have focused on in vitro, and the safety and efficacy of this technology is uncertain, severely limiting the clinical application of this technology. This study investigates the impact of compression pressure, energy dosage, and duration on anastomotic quality using a homemade anastomosis device in both in vitro and in vivo settings. METHODS: Two hundred eighty intestines and 5 experimental pigs were used for in vitro and in vivo experiments, respectively. The in vitro experiments were conducted to study the effects of initial pressure (50-400 kpa), voltage (40-60 V), and time (10-20 s) on burst pressure, breaking strength, thermal damage, and histopathological microstructure of the anastomosis. Optimal parameters were then inlaid into a homemade anastomosis and used for in vivo experiments to study the postoperative porcine survival rate and the pathological structure of the tissues at the anastomosis and the characteristics of the collagen fibers. RESULTS: The anastomotic strength was highest when the compression pressure was 250 kPa, the voltage was 60 V, and the time was 15 s. The degree of thermal damage to the surrounding tissues was the lowest. The experimental pigs had no adverse reactions after the operation, and the survival rate was 100%. 30 days after the operation, the surgical site healed well, and the tissues at the anastomosis changed from immediate adhesions to permanent connections. CONCLUSION: High-frequency electric welding technology has a certain degree of safety and effectiveness. It has the potential to replace the stapler anastomosis in future and become the next generation of new anastomosis device.


Sujet(s)
Anastomose chirurgicale , Intestin grêle , Pression , Animaux , Anastomose chirurgicale/méthodes , Suidae , Intestin grêle/chirurgie , Résistance à la traction , Techniques in vitro
16.
Bioresour Technol ; 401: 130718, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38641303

RÉSUMÉ

Recently, microalgae had received extensive attention for carbon capture and utilization. But its overall efficiency still could not reach a satisfactory degree. Artificial photosynthesis showed better efficiency in the conversion of carbon dioxide. However, artificial photosynthesis could generally only produce C1-C3 organic matters at present. Some studies showed that heterotrophic microalgae can efficiently synthesize high value organic matters by using simple organic matter such as acetate. Therefore, the combination of artificial photosynthesis with heterotrophic microalgae culture showed great potential for efficient carbon capture and high-value organic matter production. This article systematically analyzed the characteristics and challenges of carbon dioxide conversion by microalgae and artificial photosynthesis. On this basis, the coupling mode and development trend of artificial photosynthesis combined with microalgae culture were discussed. In summary, the combination of artificial photosynthesis and microalgae culture has great potential in the field of carbon capture and utilization, and deserves further study.


Sujet(s)
Dioxyde de carbone , Microalgues , Photosynthèse , Microalgues/métabolisme , Dioxyde de carbone/métabolisme , Biotechnologie/méthodes , Carbone/métabolisme
17.
Anal Chim Acta ; 1302: 342503, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38580412

RÉSUMÉ

BACKGROUND: The increasing uranium containing wastes generated during uranium mining and finishing pose a huge threat to the environment and human health, and thus robust strategies for on-site monitoring of uranium pollutant are of great significance for environmental protection around uranium tailings. RESULTS: Herein, a facile "turn-on" colorimetric platform that can achieve uranium detection by spectrometry and naked eyes was developed based on the uranium-enhanced nanozyme activity of covalent organic framework (JUC-505). Thanks to the extended π-conjugated skeleton and donor-acceptor (D-A) structure, JUC-505 exhibited superior photo-activated nanozyme activity, which would be prohibited when the cyano group in JUC-505 skeleton was transformed to the amidoxime group. Further results elucidated that the coordination of uranium with amidoxime groups led to the electron transfer between uranium and the JUC-505-AO skeleton, and thus significantly restored the nanozymatic activity of JUC-505-AO with the subsequent remarkable color changes. Moreover, the uranium concentrations in uranium tailing wastewater detected by the present "turn-on" colorimetric method were well agreed with those by ICP-MS, demonstrating a high accuracy of the present method in real samples. SIGNIFICANCE: The D-A structured JUC-505 with superior photocatalytic property and nanozymatic activity was applied to facilitate colorimetric detection of uranium, which displays the advantages of low detection limit, excellent selectivity, fast response and simple operation for uranium detection in real samples, and shows a great potential in on-site monitoring of uranium pollutant around uranium tailings as well as nuclear power plant.

18.
Front Microbiol ; 15: 1370996, 2024.
Article de Anglais | MEDLINE | ID: mdl-38572232

RÉSUMÉ

Introduction: Enhancing the planning of the forest-agricultural composite model and increasing the efficiency with which forest land is utilized could benefit from a thorough understanding of the impacts of intercropping between forests and agriculture on soil physicochemical properties and microbial communities. Methods: Populus cathayana × candansis cv. Xinlin No.1 and Glycine max intercrop soils, along with their corresponding monocrops, were used in this study's llumina high-throughput sequencing analysis to determine the composition and diversity of soil bacterial and fungal communities. Results: The findings indicated that intercropping considerably raised the soil's total phosphorus content and significantly lowered the soil's carbon nitrogen ratio when compared to poplar single cropping. Furthermore, the total carbon and nitrogen content of soil was increased and the soil pH was decreased. The sequencing results showed that intercropping had no significant effect on soil alpha diversity. Intercropping could increase the composition of fungal community and decrease the composition of bacterial community in poplar soil. At the phylum level, intercropping significantly increased the relative abundance of four dominant phyla, i.e., Patescibacteria, Proteobacteria, Patescibacteria and Deinococcus-Thermus. And the relative abundances of only two dominant phyla were significantly increased. It was found that soil total phosphorus and available phosphorus content had the strongest correlation with soil bacterial community diversity, and soil pH had the strongest correlation with soil fungal community diversity. Discussion: The results of this study were similar to those of previous studies. This study can serve as a theoretical foundation for the development of a poplar and black bean-based forest-agricultural complex management system in the future.

19.
Front Microbiol ; 15: 1320500, 2024.
Article de Anglais | MEDLINE | ID: mdl-38525084

RÉSUMÉ

Introduction: Postmenopausal osteoporosis (PMOP) is a common chronic disease, and the loss of bone density and bone strength after menopause are its main symptoms. Effective treatments for PMOP are still uncertain, but Chinese medicine has some advantages in slowing down bone loss. Shengu granules are often used clinically to treat PMOP. It has been shown to be an effective prescription for the treatment of PMOP, and there is evidence that gut flora may play an important role. However, whether Shengu granules attenuate PMOP by modulating gut flora and related mechanisms remains unclear. Methods: In this study, we mainly examined the bone strength of the femur, the structure of the intestinal microbiota, SCFAs in the feces and the level of FOXP3 cells in the colon. To further learn about the inflammation response, the condition of the mucosa and the level of cytokines in the serum also included in the testing. In addition, to get the information of the protein expression, the protein expression of OPG and RANKL in the femur and the protein expression of ZO-1 and Occludin in the colon were taken into account. Results: The osteoporosis was significantly improved in the SG group compared with the OVX group, and the diversity of intestinal flora, the secretion level of SCFAs and the expression level of FOXP3 were significantly increased compared with the OVX group. In terms of inflammatory indicators, the intestinal inflammation scores of the SG group was significantly lower than those in the OVX group. Additionally, the serum expression levels of IL-10 and TGF-ß in the SG group were significantly increased compared with the OVX group, and the expression levels of IL-17 and TNF-α were significantly decreased compared with the OVX group. In terms of protein expression, the expression levels of ZO-1, Occluding and OPG were significantly increased in the SG group compared with the OVX group, and the expression level of RANKL was significantly decreased compared with the OVX group. Discussion: Shengu granules treatment can improve the imbalance of intestinal flora, increase the secretion of SCFAs and the expression of FOXP3, which reduces the inflammatory response and repairs the intestinal barrier, as well as regulates the expression of OPG/RANKL signaling axis. Overall, Shengu granules ameliorate ovariectomy-induced osteoporosis by the gut-bone-immune axis.

20.
Chem Commun (Camb) ; 60(26): 3583-3586, 2024 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-38470082

RÉSUMÉ

An imidazolyl hydrogen-bonded organic framework (HOF-T) with outstanding thermal and water stability was constructed by C-H⋯N hydrogen bonding and C-H⋯π interactions. UO22+ can be selectively captured by the imidazole group of HOF-T and rapidly reduced to UO2 under visible light irradiation, realizing exceptional uranium removal with high capacity and fast kinetics.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...