Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Database (Oxford) ; 20192019 01 01.
Article de Anglais | MEDLINE | ID: mdl-31392324

RÉSUMÉ

We introduce Semantic Ontology-Controlled application for web Content Management Systems (SOCCOMAS), a development framework for FAIR ('findable', 'accessible', 'interoperable', 'reusable') Semantic Web Content Management Systems (S-WCMSs). Each S-WCMS run by SOCCOMAS has its contents managed through a corresponding knowledge base that stores all data and metadata in the form of semantic knowledge graphs in a Jena tuple store. Automated procedures track provenance, user contributions and detailed change history. Each S-WCMS is accessible via both a graphical user interface (GUI), utilizing the JavaScript framework AngularJS, and a SPARQL endpoint. As a consequence, all data and metadata are maximally findable, accessible, interoperable and reusable and comply with the FAIR Guiding Principles. The source code of SOCCOMAS is written using the Semantic Programming Ontology (SPrO). SPrO consists of commands, attributes and variables, with which one can describe an S-WCMS. We used SPrO to describe all the features and workflows typically required by any S-WCMS and documented these descriptions in a SOCCOMAS source code ontology (SC-Basic). SC-Basic specifies a set of default features, such as provenance tracking and publication life cycle with versioning, which will be available in all S-WCMS run by SOCCOMAS. All features and workflows specific to a particular S-WCMS, however, must be described within an instance source code ontology (INST-SCO), defining, e.g. the function and composition of the GUI, with all its user interactions, the underlying data schemes and representations and all its workflow processes. The combination of descriptions in SC-Basic and a given INST-SCO specify the behavior of an S-WCMS. SOCCOMAS controls this S-WCMS through the Java-based middleware that accompanies SPrO, which functions as an interpreter. Because of the ontology-controlled design, SOCCOMAS allows easy customization with a minimum of technical programming background required, thereby seamlessly integrating conventional web page technologies with semantic web technologies. SOCCOMAS and the Java Interpreter are available from (https://github.com/SemanticProgramming).


Sujet(s)
Reconnaissance automatique des formes , Langages de programmation , Toile sémantique , Interface utilisateur
2.
PLoS One ; 7(12): e48603, 2012.
Article de Anglais | MEDLINE | ID: mdl-23251333

RÉSUMÉ

BACKGROUND: Distinguishing bona fide (i.e. natural) and fiat (i.e. artificial) physical boundaries plays a key role for distinguishing natural from artificial material entities and is thus relevant to any scientific formal foundational top-level ontology, as for instance the Basic Formal Ontology (BFO). In BFO, the distinction is essential for demarcating two foundational categories of material entity: object and fiat object part. The commonly used basis for demarcating bona fide from fiat boundary refers to two criteria: (i) intrinsic qualities of the boundary bearers (i.e. spatial/physical discontinuity, qualitative heterogeneity) and (ii) mind-independent existence of the boundary. The resulting distinction of bona fide and fiat boundaries is considered to be categorial and exhaustive. METHODOLOGY/PRINCIPAL FINDINGS: By Referring to various examples from biology, we demonstrate that the hitherto used distinction of boundaries is not categorial: (i) spatial/physical discontinuity is a matter of scale and the differentiation of bona fide and fiat boundaries is thus granularity-dependent, and (ii) this differentiation is not absolute, but comes in degrees. By reducing the demarcation criteria to mind-independence and by also considering dispositions and historical relations of the bearers of boundaries, instead of only considering their spatio-structural properties, we demonstrate with various examples that spatio-structurally fiat boundaries can nevertheless be mind-independent and in this sense bona fide. CONCLUSIONS/SIGNIFICANCE: We argue that the ontological status of a given boundary is perspective-dependent and that the strictly spatio-structural demarcation criteria follow a static perspective that is ignorant of causality and the dynamics of reality. Based on a distinction of several ontologically independent perspectives, we suggest different types of boundaries and corresponding material entities, including boundaries based on function (locomotion, physiology, ecology, development, reproduction) and common history (development, heredity, evolution). We argue that for each perspective one can differentiate respective bona fide from fiat boundaries.


Sujet(s)
Sensibilité au contraste/physiologie , Perception visuelle/physiologie , Évolution biologique , Humains
3.
PLoS One ; 7(1): e30004, 2012.
Article de Anglais | MEDLINE | ID: mdl-22253856

RÉSUMÉ

BACKGROUND: The Basic Formal Ontology (BFO) is a top-level formal foundational ontology for the biomedical domain. It has been developed with the purpose to serve as an ontologically consistent template for top-level categories of application oriented and domain reference ontologies within the Open Biological and Biomedical Ontologies Foundry (OBO). BFO is important for enabling OBO ontologies to facilitate in reliably communicating and managing data and metadata within and across biomedical databases. Following its intended single inheritance policy, BFO's three top-level categories of material entity (i.e. 'object', 'fiat object part', 'object aggregate') must be exhaustive and mutually disjoint. We have shown elsewhere that for accommodating all types of constitutively organized material entities, BFO must be extended by additional categories of material entity. METHODOLOGY/PRINCIPAL FINDINGS: Unfortunately, most biomedical material entities are cumulative-constitutively organized. We show that even the extended BFO does not exhaustively cover cumulative-constitutively organized material entities. We provide examples from biology and everyday life that demonstrate the necessity for 'portion of matter' as another material building block. This implies the necessity for further extending BFO by 'portion of matter' as well as three additional categories that possess portions of matter as aggregate components. These extensions are necessary if the basic assumption that all parts that share the same granularity level exhaustively sum to the whole should also apply to cumulative-constitutively organized material entities. By suggesting a notion of granular representation we provide a way to maintain the single inheritance principle when dealing with cumulative-constitutively organized material entities. CONCLUSIONS/SIGNIFICANCE: We suggest to extend BFO to incorporate additional categories of material entity and to rearrange its top-level material entity taxonomy. With these additions and the notion of granular representation, BFO would exhaustively cover all top-level types of material entities that application oriented ontologies may use as templates, while still maintaining the single inheritance principle.


Sujet(s)
Recherche biomédicale , Systèmes de gestion de bases de données , Bases de données factuelles , Vocabulaire contrôlé , Agrégation cellulaire , Classification , Analyse de regroupements
4.
PLoS One ; 6(4): e18794, 2011 Apr 21.
Article de Anglais | MEDLINE | ID: mdl-21533043

RÉSUMÉ

BACKGROUND: Application oriented ontologies are important for reliably communicating and managing data in databases. Unfortunately, they often differ in the definitions they use and thus do not live up to their potential. This problem can be reduced when using a standardized and ontologically consistent template for the top-level categories from a top-level formal foundational ontology. This would support ontological consistency within application oriented ontologies and compatibility between them. The Basic Formal Ontology (BFO) is such a foundational ontology for the biomedical domain that has been developed following the single inheritance policy. It provides the top-level template within the Open Biological and Biomedical Ontologies Foundry. If it wants to live up to its expected role, its three top-level categories of material entity (i.e., 'object', 'fiat object part', 'object aggregate') must be exhaustive, i.e. every concrete material entity must instantiate exactly one of them. METHODOLOGY/PRINCIPAL FINDINGS: By systematically evaluating all possible basic configurations of material building blocks we show that BFO's top-level categories of material entity are not exhaustive. We provide examples from biology and everyday life that demonstrate the necessity for two additional categories: 'fiat object part aggregate' and 'object with fiat object part aggregate'. By distinguishing topological coherence, topological adherence, and metric proximity we furthermore provide a differentiation of clusters and groups as two distinct subcategories for each of the three categories of material entity aggregates, resulting in six additional subcategories of material entity. CONCLUSIONS/SIGNIFICANCE: We suggest extending BFO to incorporate two additional categories of material entity as well as two subcategories for each of the three categories of material entity aggregates. With these additions, BFO would exhaustively cover all top-level types of material entity that application oriented ontologies may use as templates. Our result, however, depends on the premise that all material entities are organized according to a constitutive granularity.


Sujet(s)
Biologie informatique
5.
BMC Evol Biol ; 10: 339, 2010 Nov 04.
Article de Anglais | MEDLINE | ID: mdl-21050428

RÉSUMÉ

BACKGROUND: During embryonic development of segmented animals, body segments are thought to arise from the so-called "posterior growth zone" and the occurrence of this "zone" has been used to support the homology of segmentation between arthropods, annelids, and vertebrates. However, the term "posterior growth zone" is used ambiguously in the literature, mostly referring to a region of increased proliferation at the posterior end of the embryo. To determine whether such a localised posterior proliferation zone is an ancestral feature of Panarthropoda (Onychophora + Tardigrada + Arthropoda), we examined cell division patterns in embryos of Onychophora. RESULTS: Using in vivo incorporation of the DNA replication marker BrdU (5-bromo-2'-deoxyuridine) and anti-phospho-histone H3 immunolabelling, we found that a localised posterior region of proliferating cells does not occur at any developmental stage in onychophoran embryos. This contrasts with a localised pattern of cell divisions at the posterior end of annelid embryos, which we used as a positive control. Based on our data, we present a mathematical model, which challenges the paradigm that a localised posterior proliferation zone is necessary for segment patterning in short germ developing arthropods. CONCLUSIONS: Our findings suggest that a posterior proliferation zone was absent in the last common ancestor of Onychophora and Arthropoda. By comparing our data from Onychophora with those from annelids, arthropods, and chordates, we suggest that the occurrence of a "posterior growth zone" currently cannot be used to support the homology of segmentation between these three animal groups.


Sujet(s)
Invertébrés/embryologie , Invertébrés/croissance et développement , Animaux , Division cellulaire , Invertébrés/cytologie , Modèles théoriques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...