Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38445882

RÉSUMÉ

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Sujet(s)
Tumeurs du cerveau , Systèmes de délivrance de médicaments , Photothérapie dynamique , Photosensibilisants , Vertéporfine , Animaux , Photothérapie dynamique/méthodes , Vertéporfine/pharmacologie , Vertéporfine/usage thérapeutique , Souris , Photosensibilisants/administration et posologie , Photosensibilisants/pharmacologie , Tumeurs du cerveau/traitement médicamenteux , Systèmes de délivrance de médicaments/méthodes , Glioblastome/traitement médicamenteux , Nanoparticules/composition chimique , Modèles animaux de maladie humaine , Humains , Rats , Liposomes , Lignée cellulaire tumorale , Encéphale/métabolisme , Encéphale/effets des médicaments et des substances chimiques
2.
bioRxiv ; 2023 Oct 23.
Article de Anglais | MEDLINE | ID: mdl-37986908

RÉSUMÉ

ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE