Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
PLoS One ; 19(5): e0297244, 2024.
Article de Anglais | MEDLINE | ID: mdl-38820354

RÉSUMÉ

Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.


Sujet(s)
Encéphale , Imagerie par résonance magnétique , Humains , Encéphale/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Adulte , Mâle , Femelle , Traitement d'image par ordinateur/méthodes , Jeune adulte
2.
NMR Biomed ; : e4947, 2023 Apr 06.
Article de Anglais | MEDLINE | ID: mdl-37021657

RÉSUMÉ

MRI's T2 relaxation time is a valuable biomarker for neuromuscular disorders and muscle dystrophies. One of the hallmarks of these pathologies is the infiltration of adipose tissue and a loss of muscle volume. This leads to a mixture of two signal components, from fat and from water, to appear in each imaged voxel, each having a specific T2 relaxation time. In this proof-of-concept work, we present a technique that can separate the signals from water and from fat within each voxel, measure their separate T2 values, and calculate their relative fractions. The echo modulation curve (EMC) algorithm is a dictionary-based technique that offers accurate and reproducible mapping of T2 relaxation times. We present an extension of the EMC algorithm for estimating subvoxel fat and water fractions, alongside the T2 and proton-density values of each component. To facilitate data processing, calf and thigh anatomy were automatically segmented using a fully convolutional neural network and FSLeyes software. The preprocessing included creating two signal dictionaries, for water and for fat, using Bloch simulations of the prospective protocol. Postprocessing included voxelwise fitting for two components, by matching the experimental decay curve to a linear combination of the two simulated dictionaries. Subvoxel fat and water fractions and relaxation times were generated and used to calculate a new quantitative biomarker, termed viable muscle index, and reflecting disease severity. This biomarker indicates the fraction of remaining muscle out of the entire muscle region. The results were compared with those using the conventional Dixon technique, showing high agreement (R = 0.98, p < 0.001). It was concluded that the new extension of the EMC algorithm can be used to quantify abnormal fat infiltration as well as identify early inflammatory processes corresponding to elevation in the T2 value of the water (muscle) component. This new ability may improve the diagnostic accuracy of neuromuscular diseases, help stratification of patients according to disease severity, and offer an efficient tool for tracking disease progression.

3.
J Magn Reson Imaging ; 58(2): 642-649, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-36495014

RÉSUMÉ

BACKGROUND: Magnetic resonance imaging (MRI) diagnosis is usually performed by analyzing contrast-weighted images, where pathology is detected once it reached a certain visual threshold. Computer-aided diagnosis (CAD) has been proposed as a way for achieving higher sensitivity to early pathology. PURPOSE: To compare conventional (i.e., visual) MRI assessment of artificially generated multiple sclerosis (MS) lesions in the brain's white matter to CAD based on a deep neural network. STUDY TYPE: Prospective. POPULATION: A total of 25 neuroradiologists (15 males, age 39 ± 9, 9 ± 9.8 years of experience) independently assessed all synthetic lesions. FIELD STRENGTH/SEQUENCE: A 3.0 T, T2 -weighted multi-echo spin-echo (MESE) sequence. ASSESSMENT: MS lesions of varying severity levels were artificially generated in healthy volunteer MRI scans by manipulating T2 values. Radiologists and a neural network were tasked with detecting these lesions in a series of 48 MR images. Sixteen images presented healthy anatomy and the rest contained a single lesion at eight increasing severity levels (6%, 9%, 12%, 15%, 18%, 21%, 25%, and 30% elevation in T2 ). True positive (TP) rates, false positive (FP) rates, and odds ratios (ORs) were compared between radiological diagnosis and CAD across the range lesion severity levels. STATISTICAL TESTS: Diagnostic performance of the two approaches was compared using z-tests on TP rates, FP rates, and the logarithm of ORs across severity levels. A P-value <0.05 was considered statistically significant. RESULTS: ORs of identifying pathology were significantly higher for CAD vis-à-vis visual inspection for all lesions' severity levels. For a 6% change in T2 value (lowest severity), radiologists' TP and FP rates were not significantly different (P = 0.12), while the corresponding CAD results remained statistically significant. DATA CONCLUSION: CAD is capable of detecting the presence or absence of more subtle lesions with greater precision than the representative group of 25 radiologists chosen in this study. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Sujet(s)
Imagerie par résonance magnétique , Sclérose en plaques , Mâle , Humains , Études prospectives , Sensibilité et spécificité , Imagerie par résonance magnétique/méthodes , Sclérose en plaques/imagerie diagnostique , Sclérose en plaques/anatomopathologie , Ordinateurs , Encéphale/imagerie diagnostique , Encéphale/anatomopathologie , Études rétrospectives
4.
NMR Biomed ; 35(12): e4807, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-35899528

RÉSUMÉ

High-resolution mapping of magnetic resonance imaging (MRI)'s transverse relaxation time (T2 ) can benefit many clinical applications by offering improved anatomic details, enhancing the ability to probe tissues' microarchitecture, and facilitating the identification of early pathology. Increasing spatial resolutions, however, decreases data's signal-to-noise ratio (SNR), particularly at clinical scan times. This impairs imaging quality, and the accuracy of subsequent radiological interpretation. Recently, principal component analysis (PCA) was employed for denoising diffusion-weighted MR images and was shown to be effective for improving parameter estimation in multiexponential relaxometry. This study combines the Marchenko-Pastur PCA (MP-PCA) signal model with the echo modulation curve (EMC) algorithm for denoising multiecho spin-echo (MESE) MRI data and improving the precision of EMC-generated single T2 relaxation maps. The denoising technique was validated on simulations, phantom scans, and in vivo brain and knee data. MESE scans were performed on a 3-T Siemens scanner. The acquired images were denoised using the MP-PCA algorithm and were then provided as input for the EMC T2 -fitting algorithm. Quantitative analysis of the denoising quality included comparing the standard deviation and coefficient of variation of T2 values, along with gold standard SNR estimation of the phantom scans. The presented denoising technique shows an increase in T2 maps' precision and SNR, while successfully preserving the morphological features of the tissue. Employing MP-PCA denoising as a preprocessing step decreases the noise-related variability of T2 maps produced by the EMC algorithm and thus increases their precision. The proposed method can be useful for a wide range of clinical applications by facilitating earlier detection of pathologies and improving the accuracy of patients' follow-up.


Sujet(s)
Algorithmes , Imagerie par résonance magnétique , Humains , Rapport signal-bruit , Analyse en composantes principales , Imagerie par résonance magnétique/méthodes , Encéphale/imagerie diagnostique , Encéphale/anatomie et histologie , Fantômes en imagerie , Traitement d'image par ordinateur/méthodes
5.
NMR Biomed ; 34(8): e4537, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-33993573

RÉSUMÉ

MRI's transverse relaxation time (T2 ) is sensitive to tissues' composition and pathological state. While variations in T2 values can be used as clinical biomarkers, it is challenging to quantify this parameter in vivo due to the complexity of the MRI signal model, differences in protocol implementations, and hardware imperfections. Herein, we provide a detailed analysis of the echo modulation curve (EMC) platform, offering accurate and reproducible mapping of T2 values, from 2D multi-slice multi-echo spin-echo (MESE) protocols. Computer simulations of the full Bloch equations are used to generate an advanced signal model, which accounts for stimulated echoes and transmit field (B1+ ) inhomogeneities. In addition to quantifying T2 values, the EMC platform also provides proton density (PD) maps, and fat-water fraction maps. The algorithm's accuracy, reproducibility, and insensitivity to T1 values are validated on a phantom constructed by the National Institute of Standards and Technology and on in vivo human brains. EMC-derived T2 maps show excellent agreement with ground truth values for both in vitro and in vivo models. Quantitative values are accurate and stable across scan settings and for the physiological range of T2 values, while showing robustness to main field (B0 ) inhomogeneities, to variations in T1 relaxation time, and to magnetization transfer. Extension of the algorithm to two-component fitting yields accurate fat and water T2 maps along with their relative fractions, similar to a reference three-point Dixon technique. Overall, the EMC platform allows to generate accurate and stable T2 maps, with a full brain coverage using a standard MESE protocol and at feasible scan times. The utility of EMC-based T2 maps was demonstrated on several clinical applications, showing robustness to variations in other magnetic properties. The algorithm is available online as a full stand-alone package, including an intuitive graphical user interface.


Sujet(s)
Imagerie par résonance magnétique , Algorithmes , Simulation numérique , Volontaires sains , Humains , Lipides/composition chimique , Fantômes en imagerie , Reproductibilité des résultats , Facteurs temps , Eau
6.
Magn Reson Med ; 82(1): 145-158, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-30860287

RÉSUMÉ

PURPOSE: Multi-echo spin-echo (MESE) protocol is the most effective tool for mapping T2 relaxation in vivo. Still, MESE extensive use of radiofrequency pulses causes magnetization transfer (MT)-related bias of the water signal, instigated by the presence of macromolecules (MMP). Here, we analyze the effects of MT on MESE signal, alongside their impact on quantitative T2 measurements. METHODS: Study used 3 models: in vitro urea phantom, ex vivo horse brain, and in vivo human brain. MT ratio (MTR) was measured between single-SE and MESE protocols under different scan settings including varying echo train lengths, number of slices, and inter-slice gap. MTR and T2 values were extracted for each model and protocol. RESULTS: MT interactions biased MESE signals, and in certain settings, the corresponding T2 values. T2 underestimation of up to 4.3% was found versus single-SE values in vitro and up to 13.8% ex vivo, correlating with the MMP content. T2 bias originated from intra-slice saturation of the MMP, rather than from indirect saturation in multi-slice acquisitions. MT-related signal attenuation was caused by slice crosstalk and/or partial T1 recovery, whereas smaller contribution was caused by MMP interactions. Inter-slice gap had a similar effect on in vivo MTR (21.2%), in comparison to increasing the number of slices (18.9%). CONCLUSIONS: MT influences MESE protocols either by uniformly attenuating the entire echo train or by cumulatively attenuating the signal along the train. Although both processes depend on scan settings and MMP content, only the latter will cause underestimation of T2 .


Sujet(s)
Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Adulte , Algorithmes , Animaux , Encéphale/imagerie diagnostique , Equus caballus , Humains , Mâle , Fantômes en imagerie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...