Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nature ; 619(7971): 851-859, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37468633

RÉSUMÉ

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Sujet(s)
Pneumocytes , Différenciation cellulaire , Tumeurs du poumon , Poumon , Protéine p53 suppresseur de tumeur , Animaux , Souris , Pneumocytes/cytologie , Pneumocytes/métabolisme , Pneumocytes/anatomopathologie , Poumon/cytologie , Poumon/métabolisme , Poumon/anatomopathologie , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/prévention et contrôle , Souris knockout , Protéine p53 suppresseur de tumeur/déficit , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Allèles , Analyse de profil d'expression de gènes , Assemblage et désassemblage de la chromatine , ADN/métabolisme , Lésion pulmonaire/génétique , Lésion pulmonaire/métabolisme , Lésion pulmonaire/anatomopathologie , Évolution de la maladie , Lignage cellulaire , Régénération , Auto-renouvellement cellulaire
2.
Mol Cell ; 82(13): 2370-2384.e10, 2022 07 07.
Article de Anglais | MEDLINE | ID: mdl-35512709

RÉSUMÉ

The p53 transcription factor drives anti-proliferative gene expression programs in response to diverse stressors, including DNA damage and oncogenic signaling. Here, we seek to uncover new mechanisms through which p53 regulates gene expression using tandem affinity purification/mass spectrometry to identify p53-interacting proteins. This approach identified METTL3, an m6A RNA-methyltransferase complex (MTC) constituent, as a p53 interactor. We find that METTL3 promotes p53 protein stabilization and target gene expression in response to DNA damage and oncogenic signals, by both catalytic activity-dependent and independent mechanisms. METTL3 also enhances p53 tumor suppressor activity in in vivo mouse cancer models and human cancer cells. Notably, METTL3 only promotes tumor suppression in the context of intact p53. Analysis of human cancer genome data further supports the notion that the MTC reinforces p53 function in human cancer. Together, these studies reveal a fundamental role for METTL3 in amplifying p53 signaling in response to cellular stress.


Sujet(s)
Methyltransferases , Protéine p53 suppresseur de tumeur , Animaux , Carcinogenèse , Methyltransferases/métabolisme , Souris , ARN , Facteurs de transcription/métabolisme , Protéine p53 suppresseur de tumeur/génétique
3.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Article de Anglais | MEDLINE | ID: mdl-34242585

RÉSUMÉ

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Protéines du cycle cellulaire/métabolisme , Membres/embryologie , Haploinsuffisance , Biosynthèse des protéines , Maturation post-traductionnelle des protéines , Protéines ribosomiques/physiologie , Protéine p53 suppresseur de tumeur/physiologie , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Plan d'organisation du corps , Protéines du cycle cellulaire/génétique , Régulation de l'expression des gènes au cours du développement , Souris , Souris knockout , Phénotype , Ribosomes/métabolisme
4.
J Cell Biol ; 219(11)2020 11 02.
Article de Anglais | MEDLINE | ID: mdl-32886745

RÉSUMÉ

The mechanisms by which TP53, the most frequently mutated gene in human cancer, suppresses tumorigenesis remain unclear. p53 modulates various cellular processes, such as apoptosis and proliferation, which has led to distinct cellular mechanisms being proposed for p53-mediated tumor suppression in different contexts. Here, we asked whether during tumor suppression p53 might instead regulate a wide range of cellular processes. Analysis of mouse and human oncogene-expressing wild-type and p53-deficient cells in physiological oxygen conditions revealed that p53 loss concurrently impacts numerous distinct cellular processes, including apoptosis, genome stabilization, DNA repair, metabolism, migration, and invasion. Notably, some phenotypes were uncovered only in physiological oxygen. Transcriptomic analysis in this setting highlighted underappreciated functions modulated by p53, including actin dynamics. Collectively, these results suggest that p53 simultaneously governs diverse cellular processes during transformation suppression, an aspect of p53 function that would provide a clear rationale for its frequent inactivation in human cancer.


Sujet(s)
Apoptose , Transformation cellulaire néoplasique/anatomopathologie , Vieillissement de la cellule , Réparation de l'ADN , Oxygène/métabolisme , Protéine p53 suppresseur de tumeur/déficit , Animaux , Transformation cellulaire néoplasique/génétique , Transformation cellulaire néoplasique/métabolisme , Femelle , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Métabolome , Souris , Mutation , Transduction du signal , Protéine p53 suppresseur de tumeur/génétique
5.
Nat Commun ; 10(1): 4045, 2019 09 06.
Article de Anglais | MEDLINE | ID: mdl-31492863

RÉSUMÉ

Lysosomal enzyme deficiencies comprise a large group of genetic disorders that generally lack effective treatments. A potential treatment approach is to engineer the patient's own hematopoietic system to express high levels of the deficient enzyme, thereby correcting the biochemical defect and halting disease progression. Here, we present an efficient ex vivo genome editing approach using CRISPR-Cas9 that targets the lysosomal enzyme iduronidase to the CCR5 safe harbor locus in human CD34+ hematopoietic stem and progenitor cells. The modified cells secrete supra-endogenous enzyme levels, maintain long-term repopulation and multi-lineage differentiation potential, and can improve biochemical and phenotypic abnormalities in an immunocompromised mouse model of Mucopolysaccharidosis type I. These studies provide support for the development of genome-edited CD34+ hematopoietic stem and progenitor cells as a potential treatment for Mucopolysaccharidosis type I. The safe harbor approach constitutes a flexible platform for the expression of lysosomal enzymes making it applicable to other lysosomal storage disorders.


Sujet(s)
Édition de gène/méthodes , Génome humain , Transplantation de cellules souches hématopoïétiques/méthodes , Cellules souches hématopoïétiques/métabolisme , L-iduronidase/métabolisme , Mucopolysaccharidose de type I/thérapie , Animaux , Antigènes CD34/génétique , Antigènes CD34/métabolisme , Systèmes CRISPR-Cas , Thérapie génétique/méthodes , Humains , L-iduronidase/génétique , Souris , Souris de lignée NOD , Souris knockout , Souris SCID , Mucopolysaccharidose de type I/génétique , Mucopolysaccharidose de type I/anatomopathologie , Cellules NIH 3T3 , Phénotype , Récepteurs CCR5/génétique , Récepteurs CCR5/métabolisme , Transplantation hétérologue
6.
Front Cell Dev Biol ; 7: 159, 2019.
Article de Anglais | MEDLINE | ID: mdl-31448276

RÉSUMÉ

The YAP1/Hippo and p53 pathways are critical protectors of genome integrity in response to DNA damage. Together, these pathways secure cellular adaptation and maintain overall tissue integrity through transcriptional re-programing downstream of various environmental and biological cues generated during normal tissue growth, cell proliferation, and apoptosis. Genetic perturbations in YAP1/Hippo and p53 pathways are known to contribute to the cells' ability to turn rogue and initiate tumorigenesis. The Hippo and p53 pathways cooperate on many levels and are closely coordinated through multiple molecular components of their signaling pathways. Several functional and physical interactions have been reported to occur between YAP1/Hippo pathway components and the three p53 family members, p53, p63, and p73. Primarily, functional status of p53 family proteins dictates the subcellular localization, protein stability and transcriptional activity of the core component of the Hippo pathway, Yes-associated protein 1 (YAP1). In this review, we dissect the critical points of crosstalk between the YAP1/Hippo pathway components, with a focus on YAP1, and the p53 tumor suppressor protein family. For each p53 family member, we discuss the biological implications of their interaction with Hippo pathway components in determining cell fate under the conditions of tissue homeostasis and cancer pathogenesis.

7.
Cancer Cell ; 32(4): 460-473.e6, 2017 10 09.
Article de Anglais | MEDLINE | ID: mdl-29017057

RÉSUMÉ

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


Sujet(s)
Protéines nucléaires/physiologie , Tumeurs du pancréas/génétique , Protein Tyrosine Phosphatases, Non-Receptor/physiologie , Facteurs de transcription/physiologie , Protéine p53 suppresseur de tumeur/physiologie , Animaux , Protéines du cycle cellulaire , Prolifération cellulaire , Transformation cellulaire néoplasique , Analyse de profil d'expression de gènes , Humains , Souris , Mutation , Tumeurs du pancréas/anatomopathologie , Tumeurs du pancréas/prévention et contrôle , Transduction du signal
8.
Genes Dev ; 31(11): 1095-1108, 2017 06 01.
Article de Anglais | MEDLINE | ID: mdl-28698299

RÉSUMÉ

The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1-/- mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.


Sujet(s)
Transformation cellulaire néoplasique/génétique , ARN long non codant/génétique , ARN long non codant/métabolisme , Protéine p53 suppresseur de tumeur/métabolisme , Animaux , Carcinome du canal pancréatique/physiopathologie , Cellules cultivées , Réparation de l'ADN/génétique , Fibroblastes/anatomopathologie , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes tumoraux/génétique , Cellules HCT116 , Humains , Souris
9.
Article de Anglais | MEDLINE | ID: mdl-27864306

RÉSUMÉ

The p53 tumor suppressor is a transcriptional activator, with discrete domains that participate in sequence-specific DNA binding, tetramerization, and transcriptional activation. Mutagenesis and reporter studies have delineated two distinct activation domains (TADs) and specific hydrophobic residues within these TADs that are critical for their function. Knockin mice expressing p53 mutants with alterations in either or both of the two TADs have revealed that TAD1 is critical for responses to acute DNA damage, whereas both TAD1 and TAD2 participate in tumor suppression. Biochemical and structural studies have identified factors that bind either or both TADs, including general transcription factors (GTFs), chromatin modifiers, and negative regulators, helping to elaborate a model through which p53 activates transcription. Posttranslational modifications (PTMs) of the p53 TADs through phosphorylation also regulate TAD activity. Together, these studies on p53 TADs provide great insight into how p53 serves as a tumor suppressor.


Sujet(s)
Maturation post-traductionnelle des protéines , Activation de la transcription , Protéine p53 suppresseur de tumeur/métabolisme , Animaux , Altération de l'ADN , Régulation de l'expression des gènes tumoraux , Humains , Souris , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Protéine p53 suppresseur de tumeur/génétique
10.
Curr Biol ; 23(12): R527-30, 2013 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-23787049

RÉSUMÉ

The p53 tumor suppressor governs multiple cell-intrinsic programs, including cell-cycle arrest and apoptosis, to curb neoplastic growth. A new study reveals that p53 also acts through a novel non-cell-autonomous mechanism, by stimulating the innate immune system to maintain tissue homeostasis and suppress tumorigenesis.


Sujet(s)
Transformation cellulaire néoplasique , Vieillissement de la cellule , Cellules étoilées du foie/métabolisme , Tumeurs du foie/métabolisme , Tumeurs du foie/anatomopathologie , Protéine p53 suppresseur de tumeur/métabolisme , Animaux , Humains
11.
J Biol Chem ; 287(50): 41835-43, 2012 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-23086928

RÉSUMÉ

The retinoblastoma (RB) tumor suppressor family functions as a regulatory node governing cell cycle progression, differentiation, and apoptosis. Post-translational modifications play a critical role in modulating RB activity, but additional levels of control, including protein turnover, are also essential for proper function. The Drosophila RB homolog Rbf1 is subjected to developmentally cued proteolysis mediated by an instability element (IE) present in the C terminus of this protein. Paradoxically, instability mediated by the IE is also linked to Rbf1 repression potency, suggesting that proteolytic machinery may also be directly involved in transcriptional repression. We show that the Rbf1 IE is an autonomous degron that stimulates both Rbf1 ubiquitination and repression potency. Importantly, Rbf1 IE function is promoter-specific, contributing to repression of cell cycle responsive genes but not to repression of cell signaling genes. The multifunctional IE domain thus provides Rbf1 flexibility for discrimination between target genes embedded in divergent cellular processes.


Sujet(s)
Protéines de Drosophila/métabolisme , Protéolyse , Protéines de répression/métabolisme , Protéine du rétinoblastome/métabolisme , Facteurs de transcription/métabolisme , Ubiquitination/physiologie , Animaux , Protéines de Drosophila/génétique , Drosophila melanogaster , Régulation de l'expression des gènes/physiologie , Structure tertiaire des protéines , Protéines de répression/génétique , Protéine du rétinoblastome/génétique , Facteurs de transcription/génétique
12.
Cell Cycle ; 11(20): 3731-8, 2012 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-22895052

RÉSUMÉ

The E2F family of transcription factors contributes to oncogenesis through activation of multiple genes involved in cellular proliferation, a process that is opposed by the Retinoblastoma tumor suppressor protein (RB). RB also increases E2F1 stability by inhibiting its proteasome-mediated degradation, but the consequences of this post-translational regulation of E2F1 remain unknown. To better understand the mechanism of E2F stabilization and its physiological relevance, we examined the streamlined Rbf1-dE2F1 network in Drosophila. During embryonic development, Rbf1 is insulated from ubiquitin-mediated turnover by the COP9 signalosome, a multi-protein complex that modulates E3 ubiquitin ligase activity. Here, we report that the COP9 signalosome also protects the Cullin4-E3 ligase that is responsible for dE2F1 proteasome-mediated destruction. This dual role of the COP9 signalosome may serve to buffer E2F levels, enhancing its turnover via Cul4 protection and its stabilization through protection of Rbf1. We further show that Rbf1-mediated stabilization of dE2F1 and repression of dE2F1 cell cycle-target genes are distinct properties. Removal of an evolutionarily conserved Rbf1 C terminal degron disabled Rbf1 repression without affecting dE2F1 stabilization. This mutant form of Rbf1 also enhanced G(1)-to-S phase progression when expressed in Rbf1-containing S2 embryonic cells, suggesting that such mutations may generate gain-of-function properties relevant to cellular transformation. Consistent with this idea, several studies have identified mutations in the homologous C terminal domains of RB and p130 in human cancer.


Sujet(s)
Cullines/génétique , Réplication de l'ADN , Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Facteur de transcription E2F1/génétique , Complexes multiprotéiques/génétique , Peptide hydrolases/génétique , Facteurs de transcription/génétique , Ubiquitin-protein ligases/génétique , Animaux , Complexe du signalosome COP9 , Cycle cellulaire/génétique , Transformation cellulaire néoplasique , Cullines/métabolisme , Protéines de Drosophila/antagonistes et inhibiteurs , Protéines de Drosophila/métabolisme , Drosophila melanogaster/embryologie , Drosophila melanogaster/métabolisme , Facteur de transcription E2F1/métabolisme , Embryon non mammalien , Régulation de l'expression des gènes au cours du développement , Humains , Complexes multiprotéiques/métabolisme , Mutation , Peptide hydrolases/métabolisme , Stabilité protéique , Structure tertiaire des protéines , Protéine du rétinoblastome , Transduction du signal , Facteurs de transcription/antagonistes et inhibiteurs , Facteurs de transcription/métabolisme , Ubiquitin-protein ligases/métabolisme
13.
Mol Biol Cell ; 21(22): 3890-901, 2010 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-20861300

RÉSUMÉ

The retinoblastoma (RB) transcriptional corepressor and related family of pocket proteins play central roles in cell cycle control and development, and the regulatory networks governed by these factors are frequently inactivated during tumorigenesis. During normal growth, these proteins are subject to tight control through at least two mechanisms. First, during cell cycle progression, repressor potential is down-regulated by Cdk-dependent phosphorylation, resulting in repressor dissociation from E2F family transcription factors. Second, RB proteins are subject to proteasome-mediated destruction during development. To better understand the mechanism for RB family protein instability, we characterized Rbf1 turnover in Drosophila and the protein motifs required for its destabilization. We show that specific point mutations in a conserved C-terminal instability element strongly stabilize Rbf1, but strikingly, these mutations also cripple repression activity. Rbf1 is destabilized specifically in actively proliferating tissues of the larva, indicating that controlled degradation of Rbf1 is linked to developmental signals. The positive linkage between Rbf1 activity and its destruction indicates that repressor function is governed in a manner similar to that described by the degron theory of transcriptional activation. Analogous mutations in the mammalian RB family member p107 similarly induce abnormal accumulation, indicating substantial conservation of this regulatory pathway.


Sujet(s)
Protéines de Drosophila/métabolisme , Transduction du signal , Facteurs de transcription/métabolisme , Séquence d'acides aminés , Animaux , Animal génétiquement modifié , Technique de Western , Lignée cellulaire , Inhibiteurs de la cystéine protéinase/pharmacologie , Protéines de Drosophila/génétique , Drosophila melanogaster/cytologie , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Facteurs de transcription E2F/métabolisme , Oeil/croissance et développement , Oeil/métabolisme , Femelle , Larve/génétique , Larve/croissance et développement , Larve/métabolisme , Leupeptines/pharmacologie , Mâle , Données de séquences moléculaires , Mutation , Régions promotrices (génétique)/génétique , Liaison aux protéines , Stabilité protéique , Séquences d'acides nucléiques régulatrices/génétique , Protéine du rétinoblastome/génétique , Protéine du rétinoblastome/métabolisme , Protéine p107 de type rétinoblastome/génétique , Protéine p107 de type rétinoblastome/métabolisme , Similitude de séquences d'acides aminés , Facteurs de transcription/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...