Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 21
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Rev Lett ; 132(15): 152503, 2024 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-38682970

RÉSUMÉ

The first complete measurement of the ß-decay strength distribution of _{17}^{45}Cl_{28} was performed at the Facility for Rare Isotope Beams (FRIB) with the FRIB Decay Station Initiator during the second FRIB experiment. The measurement involved the detection of neutrons and γ rays in two focal planes of the FRIB Decay Station Initiator in a single experiment for the first time. This enabled an analytical consistency in extracting the ß-decay strength distribution over the large range of excitation energies, including neutron unbound states. We observe a rapid increase in the ß-decay strength distribution above the neutron separation energy in _{18}^{45}Ar_{27}. This was interpreted to be caused by the transitioning of neutrons into protons excited across the Z=20 shell gap. The SDPF-MU interaction with reduced shell gap best reproduced the data. The measurement demonstrates a new approach that is sensitive to the proton shell gap in neutron rich nuclei according to SDPF-MU calculations.

2.
Phys Rev Lett ; 130(12): 122502, 2023 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-37027859

RÉSUMÉ

The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu ß decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values. In particular, the 2_{3}^{+}→0_{2}^{+} and 2_{3}^{+}→4_{1}^{+} transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are discussed in terms of underlying shapes, as well as the role of neutron excitations across the N=40 gap. Enhanced axial shape asymmetry (triaxiality) is suggested to characterize ^{74}Zn in its ground state. Furthermore, an excited K=0 band with a significantly larger softness in its shape is identified. A shore of the N=40 "island of inversion" appears to manifest above Z=26, previously thought as its northern limit in the chart of the nuclides.

3.
Sci Rep ; 11(1): 16076, 2021 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-34373522

RÉSUMÉ

Low concentration phosphorene-based sensors have been fabricated using a facile and ultra-fast process which is based on an exfoliation-free sequential hydrogen plasma treatment to convert the amorphous phosphorus thin film into mono- or few-layered phosphorene sheets. These sheets have been realized directly on silicon substrates followed by the fabrication of field-effect transistors showing the low leakage current and reasonable mobility for the nano-sensors. Being capable of covering the whole surface of the silicon substrate, red phosphorus (RP) coated substrate has been employed to achieve large area phosphorene sheets. Unlike the available techniques including mechanical exfoliation, there is no need for any exfoliation and/or transfer step which is significant progress in shortening the device fabrication procedure. These phosphorene sheets have been examined using transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Raman spectroscopy and atomic-force microscopy (AFM). Electrical output in different states of the crystallization as well as its correlation with the test parameters have been also extensively used to examine the evolution of the phosphorene sheets. By utilizing the fabricated devices, the sensitivity of the phosphorene based-field effect transistors to the soluble L-Cysteine in low concentrations has been studied by measuring the FET response to the different concentrations. At a gate voltage of - 2.5 V, the range of 0.07 to 0.60 mg/ml of the L-Cysteine has been distinguishably detected presenting a gate-controlled sensor for a low-concentration solution. A reactive molecular dynamics simulation has been also performed to track the details of this plasma-based crystallization. The obtained results showed that the imparted energy from hydrogen plasma resulted in a phase transition from a system containing red phosphorus atoms to the crystal one. Interestingly and according to the simulation results, there is a directional preference of crystal growth as the crystalline domains are being formed and RP atoms are more likely to re-locate in armchair than in zigzag direction.

4.
Phys Rev Lett ; 125(17): 172501, 2020 Oct 23.
Article de Anglais | MEDLINE | ID: mdl-33156683

RÉSUMÉ

The ^{80}Ge structure was investigated in a high-statistics ß-decay experiment of ^{80}Ga using the GRIFFIN spectrometer at TRIUMF-ISAC through γ, ß-e, e-γ, and γ-γ spectroscopy. No evidence was found for the recently reported 0_{2}^{+} 639-keV level suggested as evidence for low-energy shape coexistence in ^{80}Ge. Large-scale shell model calculations performed in ^{78,80,82}Ge place the 0_{2}^{+} level in ^{80}Ge at 2 MeV. The new experimental evidence combined with shell model predictions indicate that low-energy shape coexistence is not present in ^{80}Ge.

6.
Phys Rev Lett ; 122(22): 222502, 2019 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-31283269

RÉSUMÉ

A record number of ^{100}Sn nuclei was detected and new isotopic species toward the proton dripline were discovered at the RIKEN Nishina Center. Decay spectroscopy was performed with the high-efficiency detector arrays WAS3ABi and EURICA. Both the half-life and the ß-decay end point energy of ^{100}Sn were measured more precisely than the literature values. The value and the uncertainty of the resulting strength for the pure 0^{+}→1^{+} Gamow-Teller decay was improved to B_{GT}=4.4_{-0.7}^{+0.9}. A discrimination between different model calculations was possible for the first time, and the level scheme of ^{100}In is investigated further.

7.
Phys Rev Lett ; 121(10): 102501, 2018 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-30240248

RÉSUMÉ

Differences in mean-square nuclear charge radii of ^{100-130}Cd are extracted from high-resolution collinear laser spectroscopy of the 5s ^{2}S_{1/2}→5p ^{2}P_{3/2} transition of the ion and from the 5s5p ^{3}P_{2}→5s6s ^{3}S_{1} transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete sdgh shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.

8.
Phys Rev Lett ; 118(15): 152502, 2017 Apr 14.
Article de Anglais | MEDLINE | ID: mdl-28452556

RÉSUMÉ

Angular distributions of the elastic, inelastic, and breakup cross sections of the halo nucleus ^{11}Be on ^{197}Au were measured at energies below (E_{lab}=31.9 MeV) and around (39.6 MeV) the Coulomb barrier. These three channels were unambiguously separated for the first time for reactions of ^{11}Be on a high-Z target at low energies. The experiment was performed at TRIUMF (Vancouver, Canada). The differential cross sections were compared with three different calculations: semiclassical, inert-core continuum-coupled-channels and continuum-coupled-channels ones with including core deformation. These results show conclusively that the elastic and inelastic differential cross sections can only be accounted for if core-excited admixtures are taken into account. The cross sections for these channels strongly depend on the B(E1) distribution in ^{11}Be, and the reaction mechanism is sensitive to the entanglement of core and halo degrees of freedom in ^{11}Be.

9.
Phys Rev Lett ; 117(9): 092501, 2016 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-27610847

RÉSUMÉ

We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs ß decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three ß decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a ß-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state ß feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state ß feeding of 95.5(20)%. Our measurements substantially modify the ß-decay feedings of ^{142}Cs, reducing the ß feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%.

10.
Phys Rev Lett ; 116(17): 172501, 2016 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-27176517

RÉSUMÉ

Precision measurements of superallowed Fermi ß-decay transitions, particularly for the lightest superallowed emitters ^{10}C and ^{14}O, set stringent limits on possible scalar current contributions to the weak interaction. In the present work, a discrepancy between recent measurements of the ^{10}C half-life is addressed through two high-precision half-life measurements, via γ-ray photopeak and ß counting, that yield consistent results for the ^{10}C half-life of T_{1/2}=19.2969±0.0074 s and T_{1/2}=19.3009±0.0017 s, respectively. The latter is the most precise superallowed ß-decay half-life measurement reported to date and the first to achieve a relative precision below 10^{-4}. A fit to the world superallowed ß-decay data including the ^{10}C half-life measurements reported here yields b_{F}=-0.0018±0.0021 (68% C.L.) for the Fierz interference term and C_{S}/C_{V}=+0.0009±0.0011 for the ratio of the weak scalar to vector couplings assuming left-handed neutrinos.

11.
Phys Rev Lett ; 116(16): 162501, 2016 Apr 22.
Article de Anglais | MEDLINE | ID: mdl-27152796

RÉSUMÉ

Several new isotopes, ^{96}In, ^{94}Cd, ^{92}Ag, and ^{90}Pd, have been identified at the RIKEN Nishina Center. The study of proton drip-line nuclei in the vicinity of ^{100}Sn led to the discovery of new proton emitters ^{93}Ag and ^{89}Rh with half-lives in the submicrosecond range. The systematics of the half-lives of odd-Z nuclei with T_{z}=-1/2 toward ^{99}Sn shows a stabilizing effect of the Z=50 shell closure. Production cross sections for nuclei in the vicinity of ^{100}Sn measured at different energies and target thicknesses were compared to the cross sections calculated by epax taking into account contributions of secondary reactions in the primary target.

12.
Phys Rev Lett ; 116(12): 122502, 2016 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-27058074

RÉSUMÉ

The lifetimes of the first excited 2^{+} and 4^{+} states in ^{72}Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in ^{72}Ni were populated by the one-proton knockout reaction of an intermediate energy ^{73}Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2^{+}→0^{+}) as compared to ^{68}Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope ^{70}Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 4_{1}^{+} state is consistent with models showing decay of a seniority ν=4, 4^{+} state, which is consistent with the disappearance of the 8^{+} isomer in ^{72}Ni.

13.
Phys Rev Lett ; 116(3): 032501, 2016 Jan 22.
Article de Anglais | MEDLINE | ID: mdl-26849588

RÉSUMÉ

Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction with the known quadrupole moments. This intuitive interpretation is supported by covariant density functional theory.

14.
Phys Rev Lett ; 113(5): 052502, 2014 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-25126913

RÉSUMÉ

A marked difference in the nuclear charge radius was observed between the I^{π}=3^{+} ground state and the I^{π}=0^{+} isomer of ^{38}K and is qualitatively explained using an intuitive picture of proton-neutron pairing. In a high-precision measurement of the isomer shift using bunched-beam collinear laser spectroscopy at CERN-ISOLDE, a change in the mean-square charge radius of ⟨r_{c}^{2}⟩(^{38}K^{m})-⟨r_{c}^{2}⟩(^{38}K^{g})=0.100(6) fm^{2} was obtained. This is an order of magnitude more accurate than the result of a previous indirect measurement from which it was concluded that both long-lived states in ^{38}K have similar charge radii. Our observation leads to a substantially different understanding since the difference in charge radius is, moreover, opposite in sign to previously reported theoretical predictions. It is demonstrated that the observed isomer shift can be reproduced by large-scale shell-model calculations including proton and neutron excitations across the N,Z=20 shell gaps, confirming the significance of cross-shell correlations in the region of ^{40}Ca.

15.
Phys Rev Lett ; 110(17): 172503, 2013 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-23679713

RÉSUMÉ

The ground-state spins and magnetic moments of (49,51)K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For 49K a ground-state spin I = 1/2 was firmly established. The observed hyperfine structure of 51K requires a spin I > 1/2 and strongly suggests I = 3/2. From its magnetic moment µ(51K) = +0.5129(22)µ(N) a spin-parity I(π) = 3/2+ with a dominant π1d(3/2)(-1) hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.

16.
Nat Commun ; 4: 1835, 2013.
Article de Anglais | MEDLINE | ID: mdl-23673620

RÉSUMÉ

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

17.
Phys Rev Lett ; 108(16): 162501, 2012 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-22680712

RÉSUMÉ

We report on the spectroscopic quadrupole moment measurement of the 7/2(1)(-) isomeric state in (16)(43)S(27) [E*=320.5(5) keV, T(1/2)=415(3) ns], using the time dependent perturbed angular distribution technique at the RIKEN RIBF facility. Our value, |Q(s)|=23(3) efm(2), is larger than that expected for a single-particle state. Shell model calculations using the modern SDPF-U interaction for this mass region reproduce remarkably well the measured |Q(s)|, and show that non-negligible correlations drive the isomeric state away from a purely spherical shape.

18.
Phys Rev Lett ; 107(10): 102501, 2011 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-21981497

RÉSUMÉ

Establishing how and when large N/Z values require modified or new theoretical tools is a major quest in nuclear physics. Here we report the first measurement of the lifetime of the 2(1)+ state in the near-dripline nucleus 20C. The deduced value of τ(2(1)+)=9.8±2.8(stat)(-1.1)(+0.5)(syst) ps gives a reduced transition probability of B(E2; 2(1)+→0(g.s.)+)=7.5(-1.7)(+3.0)(stat)(-0.4)(+1.0)(syst) e2 fm4 in good agreement with a shell model calculation using isospin-dependent effective charges.

19.
Phys Rev Lett ; 105(16): 162502, 2010 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-21230967

RÉSUMÉ

By studying the (109)Xe→(105)Te→(101)Sn superallowed α-decay chain, we observe low-lying states in (101)Sn, the one-neutron system outside doubly magic (100)Sn. We find that the spins of the ground state (J=7/2) and first excited state (J=5/2) in (101)Sn are reversed with respect to the traditional level ordering postulated for (103)Sn and the heavier tin isotopes. Through simple arguments and state-of-the-art shell-model calculations we explain this unexpected switch in terms of a transition from the single-particle regime to the collective mode in which orbital-dependent pairing correlations dominate.

20.
Phys Rev Lett ; 102(14): 142502, 2009 Apr 10.
Article de Anglais | MEDLINE | ID: mdl-19392431

RÉSUMÉ

The beta-delayed neutron branching ratios (P{betan}) for nuclei near doubly magic 78Ni have been directly measured using a new method combining high-resolution mass separation, reacceleration, and digital beta-gamma spectroscopy of 238U fission products. The P{betan} values for the very neutron-rich isotopes ;{76-78}Cu and 83Ga were found to be much higher than previously reported and predicted. Revised calculations of the betan process, accounting for new mass measurements and an inversion of the pi2p{3/2} and pi1f{5/2} orbitals, are in better agreement with these new experimental results.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...