Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Biomed Pharmacother ; 176: 116849, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38823275

RÉSUMÉ

Sickle cell disease (SCD) is the most severe monogenic hemoglobinopathy caused by a single genetic mutation that leads to repeated polymerization and depolymerization of hemoglobin resulting in intravascular hemolysis, cell adhesion, vascular occlusion, and ischemia-reperfusion injury. Hemolysis causes oxidative damage indirectly by generating reactive oxygen species through various pathophysiological mechanisms, which include hemoglobin autoxidation, endothelial nitric oxide synthase uncoupling, reduced nitric oxide bioavailability, and elevated levels of asymmetric dimethylarginine. Red blood cells have a built-in anti-oxidant system that includes enzymes like sodium dismutase, catalase, and glutathione peroxidase, along with free radical scavenging molecules, such as vitamin C, vitamin E, and glutathione, which help them to fight oxidative damage. However, these anti-oxidants may not be sufficient to prevent the effects of oxidative stress in SCD patients. Therefore, in line with a recent FDA request that the focus to be placed on the development of innovative therapies for SCD that address the root cause of the disease, there is a need for therapies that target oxidative stress and restore redox balance in SCD patients. This review summarizes the current state of knowledge regarding the role of oxidative stress in SCD and the potential benefits of anti-oxidant therapies. It also discusses the challenges and limitations of these therapies and suggests future directions for research and development.


Sujet(s)
Drépanocytose , Antioxydants , Stress oxydatif , Drépanocytose/traitement médicamenteux , Drépanocytose/métabolisme , Humains , Stress oxydatif/effets des médicaments et des substances chimiques , Antioxydants/usage thérapeutique , Antioxydants/pharmacologie , Animaux , Espèces réactives de l'oxygène/métabolisme
2.
Biomed Pharmacother ; 177: 117001, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38936194

RÉSUMÉ

BACKGROUND: 1,25(OH)2D3 is a fat-soluble vitamin, involved in regulating Ca2+ homeostasis in the body. Its storage in adipose tissue depends on the fat content of the body. Obesity is the result of abnormal lipid deposition due to the prolonged positive energy balance and increases the risk of several cancer types. Furthermore, it has been associated with vitamin D deficiency and defined as a low 25(OH)2D3 blood level. In addition, 1,25(OH)2D3 plays vital roles in Ca2+-Pi and glucose metabolism in the adipocytes of obese individuals and regulates the expressions of adipogenesis-associated genes in mature adipocytes. SCOPE AND APPROACH: The present contribution focused on the VDR mediated mechanisms interconnecting the obese condition and cancer proliferation due to 1,25(OH)2D3-deficiency in humans. This contribution also summarizes the identification and development of molecular targets for VDR-targeted drug discovery. KEY FINDINGS AND CONCLUSIONS: Several studies have revealed that cancer development in a background of 1,25(OH)2D3 deficient obesity involves the VDR gene. Moreover, 1,25(OH)2D3 is also known to influence several cellular processes, including differentiation, proliferation, and adhesion. The multifaceted physiology of obesity has improved our understanding of the cancer therapeutic targets. However, currently available anti-cancer drugs are notorious for their side effects, which have raised safety issues. Thus, there is interest in developing 1,25(OH)2D3-based therapies without any side effects.

3.
Ultrason Sonochem ; 100: 106623, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37832252

RÉSUMÉ

Designing a heterostructure nanoscale catalytic site to facilitate N2 adsorption and photogenerated electron transfer would maximize the potential for photocatalytic activity and N2 reduction reactions. Herein, we have explored the interfacial TiO2 nanograins between the Ti3C2TxMXene-WS2 heterostructure and addressed the beneficial active sites to expand the effective charge transfer rate and promote sonophotocatalytic N2 fixation. Benefiting from the interfacial contact and dual heterostructure interface maximizes the photogenerated carrier separation between WS2 and MXene/TiO2. The sonophotocatalytic activity of the MXene@TiO2/WS2 hybrid, which was assessed by examining the photoreduction of N2 with ultrasonic irradiation, was much higher than that of either sonocatalytic and photocatalytic activity because of the synergistic sonocatalytic effect under photoirradiation. The Schottky junction between the MXene and TiO2 on the hybrid MXene/TiO2-WS2 heterostructure resulted in the sonophotocatalytic performance through effective charge transfer, which is 1.47 and 1.24 times greater than MXene-WS2 for nitrogen fixation and pollutant degradation, respectively. Under the sonophotocatalytic process, the MXene/TiO2-WS2 heterostructure exhibits a decomposition efficiency of 98.9 % over tetracycline in 90 min, which is 5.46, 1.73, and 1.10 times greater than those of sonolysis, sonocatalysis, and photocatalysis, respectively. The production rate of NH3 on MXene/TiO2-WS2 reached 526 µmol g-1h-1, which is 3.17, 3.61, and 1.47 times higher than that of MXene, WS2, and MXene-WS2, respectively. The hybridized structure of MXene-WS2 with interfacial surface oxidized TiO2 nanograins minimizes the band potential and improves photocarrier use efficiency, contributing directly to the remarkable catalytic performance towards N2 photo fixation under visible irradiation under ultrasonic irradiation. This report provides the strategic outcome for the mass carrier transfer rate and reveals a high conversion efficiency in the hybridized heterostructure.

4.
Exp Hematol Oncol ; 12(1): 80, 2023 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-37740236

RÉSUMÉ

Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.

5.
Biomed Pharmacother ; 163: 114822, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37146418

RÉSUMÉ

Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.


Sujet(s)
Tumeurs du sein , Facteur de transcription NF-kappa B , Femelle , Humains , Facteur de transcription NF-kappa B/métabolisme , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Transduction du signal , Oncogènes , Transformation cellulaire néoplasique , Lignée cellulaire tumorale
6.
Mol Cancer ; 22(1): 65, 2023 03 30.
Article de Anglais | MEDLINE | ID: mdl-36997931

RÉSUMÉ

HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms. In this review, we describe the regulatory mechanisms that govern HOTAIR expression during cancer development and explore how HOTAIR drives BC development, metastasis, and drug resistance. In the final section of this review, we focus on the role of HOTAIR in BC management, therapeutic treatment, and prognosis, highlighting its potential therapeutic applications.


Sujet(s)
Tumeurs du sein , ARN long non codant , Femelle , Humains , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Régulation de l'expression des gènes tumoraux , Pronostic , ARN long non codant/génétique
7.
Nanomaterials (Basel) ; 12(16)2022 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-36014727

RÉSUMÉ

Quantum dots (QDs) have an unparalleled ability to mimic true colors due to their size-tunable optical and electronic properties, which make them the most promising nanoparticles in various fields. Currently, the majority of QDs available in the market are cadmium, indium, and lead-based materials but the toxicity and unstable nature of these QDs restricts their industrial and practical applications. To avoid using heavy metal ions, especially cadmium, the current research is focused on the fabrication of perovskite and vanadate QDs. Herein, we report the facile synthesis of a novel and cost-effective CsVO3 QDs for the first time. The sizes of the CsVO3 QDs produced were tuned from 2 to 10 nm by varying the reaction temperature from 140 to 190 °C. On increasing QD size, a continuous red shift was observed in absorption and emission spectra, signifying the presence of quantum confinement. In addition, along with CsVO3 QDs, the CsVO3 nanosheets self-assembled microflower-like particles were found as residue after the centrifugation; the X-ray diffraction indicated an orthorhombic structure. Under 365 nm excitation, these CsVO3 microflower-like particles exhibited broad emission with CIE coordinates in the white emission region. The acquired results suggest that CsVO3 QDs may represent a new class of cadmium-free materials for optoelectronic and biomedical applications.

8.
Nanomaterials (Basel) ; 12(15)2022 07 22.
Article de Anglais | MEDLINE | ID: mdl-35893490

RÉSUMÉ

In recent times, upconversion nanomaterials with mesoporous hollow structures have gained significant interest as a prospective nano-platform for cancer imaging and therapeutic applications. In this study, we report a highly biocompatible YVO4:1Er3+/10Yb3+ upconversion mesoporous hollow nanospheriods (YVO4:Er3+/Yb3+ UC-MHNSPs) by a facile and rapid self-sacrificing template method. The Rietveld analysis confirmed their pure phase of tetragonal zircon structure. Nitrogen adsorption-desorption isotherms revealed the mesoporous nature of these UC-MHNSPs and the surface area is found to be ~87.46 m2/g. Under near-infrared excitation (980 nm), YVO4:Er3+/Yb3+ UC-MHNSPs showed interesting color tunability from red to green emission. Initially (at 0.4 W), energy back transfer from Er3+ to Yb3+ ions leads to the strong red emission. Whereas at high pump powers (1 W), a fine green emission is observed due to the dominant three-photon excitation process and traditional energy transfer route from Er3+ to Yb3+ ions. The bright red light from the membrane of HeLa cells confirmed the effective cellular uptake of YVO4:Er3+/Yb3+ UC-MHNSPs. The resonant decrease in cell viability on increasing the concentration of curcumin conjugated YVO4:Er3+/Yb3+ UC-MHNSPs established their excellent antitumor activity. Therefore, the acquired results indicate that these YVO4:Er3+/Yb3+ UC-MHNSPs are promising drug carriers for bioimaging and various therapeutic applications.

9.
J Nanobiotechnology ; 20(1): 274, 2022 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-35701781

RÉSUMÉ

The tumor microenvironment (TME) plays a key role in cancer development and emergence of drug resistance. TME modulation has recently garnered attention as a potential approach for reprogramming the TME and resensitizing resistant neoplastic niches to existing cancer therapies such as immunotherapy or chemotherapy. Nano-based solutions have important advantages over traditional platform and can be specifically targeted and delivered to desired sites. This review explores novel nano-based approaches aimed at targeting and reprogramming aberrant TME components such as macrophages, fibroblasts, tumor vasculature, hypoxia and ROS pathways. We also discuss how nanoplatforms can be combined with existing anti-tumor regimens such as radiotherapy, immunotherapy, phototherapy or chemotherapy to enhance clinical outcomes in solid tumors.


Sujet(s)
Nanoparticules , Tumeurs , Humains , Facteurs immunologiques , Immunothérapie , Macrophages , Tumeurs/traitement médicamenteux , Microenvironnement tumoral
10.
Semin Cancer Biol ; 86(Pt 2): 1155-1162, 2022 11.
Article de Anglais | MEDLINE | ID: mdl-34147639

RÉSUMÉ

Despite advanced therapeutic strategies, the mortality and morbidity of pancreatic cancer (PC) have been increasing. This is due to the anomalous proliferation activity of stromal cells, like cancer-associated fibroblasts (CAFs), in the tumor microenvironment (TME). These cells develop resistance in the tumor cells, blocking the drug from entering the target tumor site, ultimately resulting in tumor metastasis. Additionally, the current conventional adjuvant techniques, including chemo and radiotherapy, carry higher risk due to their excess toxicity against normal healthy cells. Phytochemicals including curcumin, irinotecan and paclitaxel are anti-oxidants, less toxic, and have anti-cancerous properties; however, the use of phytochemicals is limited due to their less solubility and bioavailability. Nanotechnology offers the resources to directly target the drug to the tumor site, thereby enhancing the therapeutic efficacy of the current treatment modalities. This review focuses on the importance of nanotechnology for pancreatic ductal adenocarcinoma (PDAC) therapy and on delivering the nano-formulated phytochemicals to the target site.


Sujet(s)
Fibroblastes associés au cancer , Carcinome du canal pancréatique , Tumeurs du pancréas , Humains , Microenvironnement tumoral , Carcinome du canal pancréatique/anatomopathologie , Tumeurs du pancréas/anatomopathologie , Fibroblastes associés au cancer/anatomopathologie , Tumeurs du pancréas
11.
Semin Cancer Biol ; 69: 376-390, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-31301361

RÉSUMÉ

Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.


Sujet(s)
Antinéoplasiques/administration et posologie , Systèmes de délivrance de médicaments , Tumeurs de l'appareil génital féminin/traitement médicamenteux , Nanomédecine , Nanoparticules/administration et posologie , Animaux , Femelle , Tumeurs de l'appareil génital féminin/anatomopathologie , Humains , Nanoparticules/composition chimique
12.
Semin Cancer Biol ; 69: 178-189, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-31419527

RÉSUMÉ

Cancer is an outrageous disease with uncontrolled differentiation, growth, and migration to the other parts of the body. It is the second-most common cause of death both in the U.S. and worldwide. Current conventional therapies, though much improved and with better prognosis, have several limitations. Chemotherapeutic agents, for instance, are cytotoxic to both tumor and healthy cells, and the non-specific distribution of drugs at tumor sites limits the dose administered. Nanotechnology, which evolved from the coalescence and union of varied scientific disciplines, is a novel science that has been the focus of much research. This technology is generating more effective cancer therapies to overcome biomedical and biophysical barriers against standard interventions in the body; its unique magnetic, electrical, and structural properties make it a promising tool. This article reviews endogenous- and exogenous-based stimulus-responsive drug delivery systems designed to overcome the limitations of conventional therapies. The article also summarizes the study of nanomaterials, including polymeric, gold, silver, magnetic, and quantum dot nanoparticles. Though an array of drug delivery systems has so far been proposed, there remain many challenges and concerns that should be addressed in order to fill the gaps in the field. Prominence is given to drug delivery systems that employ external- and internal-based stimuli and that are emerging as promising tools for cancer therapeutics in clinical settings.


Sujet(s)
Antinéoplasiques/administration et posologie , Systèmes de délivrance de médicaments , Nanomédecine , Nanoparticules/administration et posologie , Nanostructures/composition chimique , Tumeurs/traitement médicamenteux , Animaux , Humains , Nanoparticules/composition chimique , Tumeurs/anatomopathologie
13.
Semin Cancer Biol ; 69: 293-306, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-31260733

RÉSUMÉ

Colorectal cancer (CRC) is one of the deadliest diseases worldwide due to a lack of early detection methods and appropriate drug delivery strategies. Conventional imaging techniques cannot accurately distinguish benign from malignant tissue, leading to frequent misdiagnosis or diagnosis at late stages of the disease. Novel screening tools with improved accuracy and diagnostic precision are thus required to reduce the mortality burden of this malignancy. Additionally, current therapeutic strategies, including radio- and chemotherapies carry adverse side effects and are limited by the development of drug resistance. Recent advances in nanotechnology have rendered it an attractive approach for designing novel clinical solutions for CRC. Nanoparticle-based formulations could assist early tumor detection and help to overcome the limitations of conventional therapies including poor aqueous solubility, nonspecific biodistribution and limited bioavailability. In this review, we shed light on various types of nanoparticles used for diagnosis and drug delivery in CRC. In addition, we will explore how these nanoparticles can improve diagnostic accuracy and promote selective drug targeting to tumor sites with increased efficiency and reduced cytotoxicity against healthy colon tissue.


Sujet(s)
Antinéoplasiques/administration et posologie , Tumeurs colorectales/diagnostic , Tumeurs colorectales/traitement médicamenteux , Systèmes de délivrance de médicaments , Imagerie multimodale/méthodes , Nanoparticules/administration et posologie , Nanotechnologie/méthodes , Animaux , Tumeurs colorectales/imagerie diagnostique , Humains , Nanoparticules/composition chimique
14.
Nanomaterials (Basel) ; 10(2)2020 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-32050408

RÉSUMÉ

A flexible asymmetric supercapacitor (ASC) with high electrochemical performance was constructed using reduced graphene oxide (rGO)-wrapped redox-active metal oxide-based negative and positive electrodes. Thin layered rGO functionality on the positive and the negative electrode surfaces has promoted the feasible surface-active sites and enhances the electrochemical response with a wide operating voltage window. Herein we report the controlled growth of rGO-wrapped tubular FeMoO4 nanofibers (NFs) via electrospinning followed by surface functionalization as a negative electrode. The tubular structure offers the ultrathin-layer decoration of rGO inside and outside of the tubular walls with uniform wrapping. The rGO-wrapped tubular FeMoO4 NF electrode exhibited a high specific capacitance of 135.2 F g-1 in Na2SO4 neutral electrolyte with an excellent rate capability and cycling stability (96.45% in 5000 cycles) at high current density. Meanwhile, the hydrothermally synthesized binder-free rGO/MnO2 nanorods on carbon cloth (rGO-MnO2@CC) were selected as cathode materials due to their high capacitance and high conductivity. Moreover, the ASC device was fabricated using rGO-wrapped FeMoO4 on carbon cloth (rGO-FeMoO4@CC) as the negative electrode and rGO-MnO2@CC as the positive electrode (rGO-FeMoO4@CC/rGO-MnO2@CC). The rationally designed ASC device delivered an excellent energy density of 38.8 W h kg-1 with a wide operating voltage window of 0.0-1.8 V. The hybrid ASC showed excellent cycling stability of 93.37% capacitance retention for 5000 cycles. Thus, the developed rGO-wrapped FeMoO4 nanotubes and MnO2 nanorods are promising hybrid electrode materials for the development of wide-potential ASCs with high energy and power density.

15.
Opt Express ; 20(22): 25058-63, 2012 Oct 22.
Article de Anglais | MEDLINE | ID: mdl-23187271

RÉSUMÉ

The light extraction of 1 × 1 mm(2) GaN-based blue light-emitting diodes (LEDs) was enhanced by a self-assembled monolayer (SAM) of silica submicron spheres. The silica spheres were synthesized with various spherical sizes via the ammonia-catalyzed hydrolysis and condensation of tetraethyl orthosilicate in water/ethanol solutions. Hexagonal closely-packed (HCP) silica sphere monolayer was formed onto the indium tin oxide layer of the LED by a spin coating process. The size effect of silica spheres on the light-extraction efficiency (LEE) of GaN-based LEDs was theoretically studied and their optimum size was determined. The simulation results showed that the use of silica spheres can improve the LEE by 1.1-1.32 times compared to the conventional LEDs. The light output power of the LED with 650-nm-thick SAM of HCP silica spheres was experimentally enhanced by 1.28 and 1.23 times under the injection currents of 100 and 350 mA, respectively. By employing the SAM of HCP silica spheres, the directional emission pattern was relatively converged, indicating a reasonable consistency with the simulation result.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...