Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 31
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Ann Med ; 56(1): 2387302, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39101236

RÉSUMÉ

BACKGROUND: Cushing's syndrome (CS) is associated with increased risk for heart failure, which often initially manifests as left ventricular diastolic dysfunction (LVDD). In this study, we aimed to explore the potential risk factors of LVDD in CS by incorporating body composition parameters. METHODS: A retrospective study was conducted on patients diagnosed with endogenous CS no less than 18 years old. The control group consisted of healthy individuals who were matched to CS patients in terms of gender, age, and BMI. LIFEx software (version 7.3) was applied to measure epicardial adipose tissue volume (EATV) on non-contrast chest CT, as well as abdominal adipose tissue and skeletal muscle mass at the first lumbar vertebral level. Echocardiography was used to evaluate left ventricular (LV) diastolic function. Body compositions and clinical data were examined in relation to early LVDD. RESULTS: A total of 86 CS patients and 86 healthy controls were enrolled. EATV was significantly higher in CS patients compared to control subjects (150.33 cm3 [125.67, 189.41] vs 90.55 cm3 [66.80, 119.84], p < 0.001). CS patients had noticeably increased visceral fat but decreased skeletal muscle in comparison to their healthy counterparts. Higher prevalence of LVDD was found in CS patients based on LV diastolic function evaluated by E/A ratio (p < 0.001). EATV was proved to be an independent risk factor for LVDD in CS patients (OR = 1.015, 95%CI 1.003-1.026, p = 0.011). If the cut-point of EATV was set as 139.252 cm3 in CS patients, the diagnostic sensitivity and specificity of LVDD were 84.00% and 55.60%, respectively. CONCLUSION: CS was associated with marked accumulation of EAT and visceral fat, reduced skeletal muscle mass, and increased prevalence of LVDD. EATV was an independent risk factor for LVDD, suggesting the potential role of EAT in the development of LVDD in CS.


This study explored the potential risk factors of LVDD in endogenous CS by incorporating body composition parameters. EATV was identified as an independent risk factor for LVDD. Targeted therapeutic interventions to reduce excessive cortisol-induced EAT accumulation may be promising to mitigate the risk of LVDD development in patients with CS.


Sujet(s)
Tissu adipeux , Syndrome de Cushing , Échocardiographie , Péricarde , Dysfonction ventriculaire gauche , Humains , Mâle , Syndrome de Cushing/physiopathologie , Syndrome de Cushing/complications , Syndrome de Cushing/épidémiologie , Femelle , Études rétrospectives , Adulte , Dysfonction ventriculaire gauche/physiopathologie , Dysfonction ventriculaire gauche/imagerie diagnostique , Dysfonction ventriculaire gauche/épidémiologie , Dysfonction ventriculaire gauche/étiologie , Péricarde/imagerie diagnostique , Tissu adipeux/imagerie diagnostique , Tissu adipeux/physiopathologie , Adulte d'âge moyen , Diastole , Facteurs de risque , Études cas-témoins , Tomodensitométrie ,
2.
J Agric Food Chem ; 72(31): 17306-17316, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39054269

RÉSUMÉ

Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.


Sujet(s)
Protéines d'arthropode , Spiranes , Animaux , Spiranes/pharmacologie , Spiranes/métabolisme , Spiranes/composition chimique , Protéines d'arthropode/génétique , Protéines d'arthropode/métabolisme , Protéines d'arthropode/composition chimique , Résistance aux substances/génétique , Carboxylesterase/génétique , Carboxylesterase/métabolisme , 4-Butyrolactone/analogues et dérivés , 4-Butyrolactone/métabolisme , 4-Butyrolactone/pharmacologie
3.
J Hazard Mater ; 476: 135163, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38996679

RÉSUMÉ

Selection of chemical-resistant predatory mites is a good alternative to balance the contradiction between chemical control and biological control. Previously, a resistant strain of Neoseiulus barkeri for chlorpyrifos was obtained. In the current study, two up-regulated (NbCYP3A6, NbCYP3A16) and one down-regulated (NbCYP3A24) P450s were screened through differential expression analysis and other detoxification-related genes such as CCEs, GST, etc. were not found. 3D modelling and molecular docking indicated that the chlorine at position 5 on the pyridine ring of chlorpyrifos, as well as a methyl group, were closest to the heme iron of the enzymes (less than 5 Å). Three active recombinant P450 proteins were heterologously expressed and metabolized with chlorpyrifos in vitro. HPLC assay showed that only NbCYP3A24 could metabolize chlorpyrifos, with a metabolism rate of 21.60 %. Analysis of the m/z of metabolites by LC-MS/MS showed that chlorine at the 5C position of chlorpyrifos was stripped and hydroxylated, whereas chlorpyrifos-oxon, a common product of oxidation by P450, was not found. Knockdown of the NbCYP3A24 gene in the susceptiblestrain did reduce the susceptibility of N. barkeri to chlorpyrifos, suggesting that the biological activity of the metabolite may be similar to chlorpyrifos-oxon, thus enhancing the inhibitory effect on the target.


Sujet(s)
Chlorpyriphos , Cytochrome P-450 enzyme system , Insecticides , Mites (acariens) , Simulation de docking moléculaire , Chlorpyriphos/métabolisme , Chlorpyriphos/composition chimique , Chlorpyriphos/analogues et dérivés , Animaux , Mites (acariens)/effets des médicaments et des substances chimiques , Cytochrome P-450 enzyme system/métabolisme , Cytochrome P-450 enzyme system/génétique , Insecticides/métabolisme , Insecticides/composition chimique , Insecticides/toxicité , Régulation négative , Hydroxylation
4.
Pestic Biochem Physiol ; 202: 105952, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38879306

RÉSUMÉ

The citrus red mite, Panonychus citri, is one of the most notorious and devastating citrus pests around the world that has developed resistance to multiple chemical acaricides. In previous research, we found that spirodiclofen-resistant is related to overexpression of P450, CCE, and ABC transporter genes in P. citri. However, the regulatory mechanisms of these detoxification genes are still elusive. This study identified all hormone receptor 96 genes of P. citri. 8 PcHR96 genes contained highly conserved domains. The expression profiles showed that PcHR96h was significantly upregulated in spirodiclofen resistant strain and after exposure to spirodiclofen. RNA interference of PcHR96h decreased expression of detoxification genes and increased spirodiclofen susceptibility in P. citri. Furthermore, molecular docking, heterologous expression, and drug affinity responsive target stability demonstrated that PcHR96h can interact with spirodiclofen in vitro. Our research results indicate that PcHR96h plays an important role in regulating spirodiclofen susceptibility and provides theoretical support for the resistance management of P. citri.


Sujet(s)
Spiranes , Animaux , Spiranes/pharmacologie , Spiranes/métabolisme , Acaricides/pharmacologie , Propionates/pharmacologie , Propionates/métabolisme , Tetranychidae/effets des médicaments et des substances chimiques , Tetranychidae/génétique , Tetranychidae/métabolisme , Simulation de docking moléculaire , Protéines d'arthropode/génétique , Protéines d'arthropode/métabolisme , Résistance aux substances/génétique , 4-Butyrolactone/analogues et dérivés
5.
J Agric Food Chem ; 72(27): 15164-15175, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38938126

RÉSUMÉ

Insecticide susceptibility is mainly determined by the insect host, but symbiotic bacteria are also an important affecting factor. In this study, we investigate the relationship between the structure of gut bacterial symbionts and insecticide susceptibility in Diaphorina citri, the important carrier of Candidatus Liberibacter asiaticus (CLas), the causal agent of Huanglongbing (HLB). Our results indicated that antibiotic treatment significantly increased the susceptibility of D. citri to bifenthrin and thiamethoxam, and significantly decreased the relative abundance of Wolbachia and Profftella, enzyme activities of CarEs, and expression level of multiple CarE genes. The relative loads of Wolbachia and Profftella were positively correlated with DcitCCE13, DcitCCE14, DcitCCE15, and DcitCCE16. RNAi and prokaryotic expression revealed that DcitCCE15 is associated with bifenthrin metabolism. These results revealed that bacterial symbionts might regulate DcitCCE15 expression, which is involved in the susceptibility of D. citri to bifenthrin.


Sujet(s)
Hemiptera , Insecticides , Symbiose , Animaux , Insecticides/pharmacologie , Hemiptera/microbiologie , Hemiptera/génétique , Hemiptera/effets des médicaments et des substances chimiques , Protéines d'insecte/génétique , Protéines d'insecte/métabolisme , Résistance aux insecticides/génétique , Wolbachia/effets des médicaments et des substances chimiques , Wolbachia/génétique , Pyréthrines/pharmacologie , Bactéries/génétique , Bactéries/effets des médicaments et des substances chimiques , Bactéries/classification , Bactéries/isolement et purification , Bactéries/métabolisme , Inactivation métabolique/génétique
6.
Int J Biol Macromol ; 270(Pt 2): 132228, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38734355

RÉSUMÉ

Panonychus citri (McGregor) strains have developed a high level of resistance to abamectin, but the underlying molecular mechanism is unknown. Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are critical for the removal of a variety of exogenous and endogenous substances. In this study, an enzyme activity assay revealed that UGTs potentially contribute to P. citri abamectin resistance. Spatiotemporal expression profiles showed that only PcUGT202A9 was significantly overexpressed in the abamectin-resistant strain (AbR) at all developmental stages. Moreover, UGT activity decreased significantly, whereas abamectin susceptibility increased significantly, in AbR after PcUGT202A9 was silenced. Three-dimensional modeling and molecular docking analyses revealed that PcUGT202A9 can bind stably to abamectin. Recombinant PcUGT202A9 activity was detected when α-naphthol was used, but the enzymatic activity was inhibited by abamectin (50 % inhibitory concentration: 803.3 ±â€¯14.20 µmol/L). High-performance liquid chromatography and mass spectrometry analyses indicated that recombinant PcUGT202A9 can effectively degrade abamectin and catalyze the conjugation of UDP-glucose to abamectin. These results imply PcUGT202A9 contributes to P. citri abamectin resistance.


Sujet(s)
Glycosyltransferase , Ivermectine , Simulation de docking moléculaire , Ivermectine/analogues et dérivés , Ivermectine/pharmacologie , Glycosyltransferase/génétique , Glycosyltransferase/métabolisme , Glycosyltransferase/composition chimique , Animaux , Résistance aux substances/génétique
7.
J Agric Food Chem ; 72(13): 7010-7020, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38529524

RÉSUMÉ

Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.


Sujet(s)
Acaricides , Tetranychidae , Animaux , Glutathione transferase/génétique , Glutathione transferase/métabolisme , Tetranychidae/génétique , Tetranychidae/métabolisme , Acaricides/pharmacologie , Acaricides/métabolisme
8.
World J Stem Cells ; 16(2): 191-206, 2024 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-38455098

RÉSUMÉ

BACKGROUND: Knee osteoarthritis (KOA) is a common orthopedic condition with an uncertain etiology, possibly involving genetics and biomechanics. Factors like changes in chondrocyte microenvironment, oxidative stress, inflammation, and immune responses affect KOA development. Early-stage treatment options primarily target symptom relief. Mesenchymal stem cells (MSCs) show promise for treatment, despite challenges. Recent research highlights microRNAs (miRNAs) within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression. This suggests exosomes (Exos) as a promising avenue for future treatment. While these findings emphasize the need for effective KOA progression management, further safety and efficacy validation for Exos is essential. AIM: To explore miR-29a's role in KOA, we'll create miR-29a-loaded vesicles, testing for early treatment in rat models. METHODS: Extraction of bone marrow MSC-derived extracellular vesicles, preparation of engineered vesicles loaded with miR-29a using ultrasonication, and identification using quantitative reverse transcription polymerase chain reaction; after establishing a rat model of KOA, rats were randomly divided into three groups: Blank control group injected with saline, normal extracellular vesicle group injected with normal extracellular vesicle suspension, and engineered extracellular vesicle group injected with engineered extracellular vesicle suspension. The three groups were subjected to general behavioral observation analysis, imaging evaluation, gross histological observation evaluation, histological detection, and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis. RESULTS: General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain, gait, joint mobility, and swelling compared to the blank control group. Additionally, the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group. Imaging examination results showed that the blank control group had the fastest progression of arthritis, the normal extracellular vesicle group had a relatively slower progression, and the engineered extracellular vesicle group had the slowest progression. Gross histological observation results showed that the blank control group had the most obvious signs of arthritis, the normal extracellular vesicle group showed signs of arthritis, and the engineered extracellular vesicle group showed no significant signs of arthritis. Using the Pelletier gross score evaluation, the engineered extracellular vesicle group had the slowest progression of arthritis. Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group, and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition. Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group. Compared to the normal extracellular vesicle group, the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells. CONCLUSION: Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability, thereby protecting articular cartilage, and slowing the progression of KOA.

9.
Insect Sci ; 31(1): 13-27, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37231527

RÉSUMÉ

Diaphorina citri is a global citrus pest. As a vector insect, it can transmit the causative agents of citrus huanglongbing, causing irreversible losses to the citrus industry. The acquisition of genomic information can provide a molecular genetic basis for effective control of D. citri. Here, the DNBSEQ™ , Oxford Nanopore Technologies, and Hi-C technologies are applied to generate a high-quality chromosome-level genome of D. citri. The genome size of D. citri was 523.78 Mb with a scaffold N50 of 47.05 Mb distributed on 13 chromosomes. A total of 250.64 Mb (47.85%) repeat sequences and 24 048 protein-coding genes were predicted. Genome resequencing of female and male individuals indicated that the sex chromosome system of D. citri is XO. Phylogenetic analysis demonstrated that D. citri and Pachypsylla venusta, which separated from their most recent common ancestor about 336.62 million years ago, were the most closely related. Additionally, we identified genes potentially involved in detoxification metabolism, pathogen transmission, and honeydew secretion for further investigation. The high-quality genome provides an important reference for developing effective management strategies of D. citri.


Sujet(s)
Citrus , Hemiptera , Humains , Animaux , Femelle , Mâle , Hemiptera/génétique , Phylogenèse , Analyse de séquence d'ADN , Chromosomes , Citrus/génétique
10.
Sci Data ; 10(1): 478, 2023 07 21.
Article de Anglais | MEDLINE | ID: mdl-37479750

RÉSUMÉ

Asian citrus psyllid (Diaphorina citri, D. citri) is the important vector of "Candidatus Liberibacter asiaticus" (CLas), associated with Huanglongbing, the most devastating citrus disease worldwide. CLas can affect endosymbiont abundance of D. citri. Here, we generated the high-quality gut endosymbiont metagenomes of Diaphorina citri on the condition of CLas infected and uninfected. The dataset comprised 6616.74 M and 6586.04 M raw reads, on overage, from CLas uninfected and infected psyllid strains, respectively. Taxonomic analysis revealed that a total of 1046 species were annotated with 10 Archaea, 733 Bacteria, 234 Eukaryota, and 69 Viruses. 80 unique genera in CLas infected D. citri were identified. DIAMOND software was used for complement function research against various functional databases, including Nr, KEGG, eggNOG, and CAZy, which annotated 84543 protein-coding genes. These datasets provided an avenue for further study of the interaction mechanism between CLas and D. citri.


Sujet(s)
Hemiptera , Rhizobiaceae , Animaux , Hemiptera/génétique , Hemiptera/microbiologie , Métagénome , Rhizobiaceae/génétique
11.
Front Genet ; 14: 1154087, 2023.
Article de Anglais | MEDLINE | ID: mdl-37347055

RÉSUMÉ

Background: Stickler syndrome (SS) is a group of hereditary collagenopathies caused by a variety of collagen and non-collagen genes. Affected patients have characteristic manifestations involving ophthalmic, articular, craniofacial and auditory disorders. SS is classified into several subtypes according to clinical and molecular features. Type 3 SS is an ultra-rare disease, known as non-ocular SS or otospondylomegaepiphyseal dysplasia (OSMED) with only a few pathogenic COL11A2 variants reported to date. Case presentation: A 29-year-old Chinese male was referred to our hospital for hearing loss and multiple joint pain. He presented a phenotype highly suggestive of OSMED, including progressive sensorineural deafness, spondyloepiphyseal dysplasia with large epiphyses, platyspondyly, degenerative osteoarthritis, and sunken nasal bridge. We detected compound heterozygous mutations in COL11A2, both of which were predicted to be splicing mutations. One is synonymous mutation c.3774C>T (p.Gly1258Gly) supposed to be a splice site mutation, the other is a novel intron mutation c.4750 + 5 G>A, which is a highly conservative site across several species. We also present a review of the current known pathogenic mutation spectrum of COL11A2 in patients with type 3 SS. Conclusion: Both synonymous extonic and intronic variants are easily overlooked by whole-exome sequencing. For patients with clinical manifestations suspected of SS syndrome, next-generation whole-genome sequencing is necessary for precision diagnosis and genetic counseling.

12.
Front Plant Sci ; 14: 1129508, 2023.
Article de Anglais | MEDLINE | ID: mdl-37313258

RÉSUMÉ

Huanglongbing (HLB), the most prevalent citrus disease worldwide, is responsible for substantial yield and economic losses. Phytobiomes, which have critical effects on plant health, are associated with HLB outcomes. The development of a refined model for predicting HLB outbreaks based on phytobiome markers may facilitate early disease detection, thus enabling growers to minimize damages. Although some investigations have focused on differences in the phytobiomes of HLB-infected citrus plants and healthy ones, individual studies are inappropriate for generating common biomarkers useful for detecting HLB on a global scale. In this study, we therefore obtained bacterial information from several independent datasets representing hundreds of citrus samples from six continents and used these data to construct HLB prediction models based on 10 machine learning algorithms. We detected clear differences in the phyllosphere and rhizosphere microbiomes of HLB-infected and healthy citrus samples. Moreover, phytobiome alpha diversity indices were consistently higher for healthy samples. Furthermore, the contribution of stochastic processes to citrus rhizosphere and phyllosphere microbiome assemblies decreased in response to HLB. Comparison of all constructed models indicated that a random forest model based on 28 bacterial genera in the rhizosphere and a bagging model based on 17 bacterial species in the phyllosphere predicted the health status of citrus plants with almost 100% accuracy. Our results thus demonstrate that machine learning models and phytobiome biomarkers may be applied to evaluate the health status of citrus plants.

13.
Insects ; 13(11)2022 Nov 02.
Article de Anglais | MEDLINE | ID: mdl-36354837

RÉSUMÉ

Spirodiclofen is one of the most widely used acaricides in China. The citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), is one of the most destructive citrus pests worldwide and has developed a high resistance to spirodiclofen. However, the molecular mechanism of spirodiclofen resistance in P. citri is still unknown. In this study, we identified a field spirodiclofen-resistant strain (DL-SC) that showed 712-fold resistance to spirodiclofen by egg bioassay compared to the susceptible strain. Target-site resistance was not detected as non-synonymous mutations were not found by amplification and sequencing of the ACCase gene of resistant and susceptible strains; in addition, the mRNA expression levels of ACCase were similar in both resistant and susceptible strains. The activity of detoxifying enzymes P450s and CCEs in the resistant strain was significantly higher than in the susceptible strain. The transcriptome expression data showed 19 xenobiotic metabolisms genes that were upregulated. Stage-specific expression profiling revealed that the most prominent upregulated gene, CYP385C10, in transcriptome data was significantly higher in resistant strains in all stages. Furthermore, functional analysis by RNAi indicated that the mortality caused by spirodiclofen was significantly increased by silencing the P450 gene CYP385C10. The current results suggest that overexpression of the P450 gene, CYP385C10, may be involved in spirodiclofen resistance in P. citri.

14.
Pest Manag Sci ; 77(11): 5032-5048, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34223705

RÉSUMÉ

BACKGROUND: Amitraz is a broad-spectrum insecticide/acaricide for the control of aphids, psyllids, ticks and mites. Current evidence suggests that ticks and phytophagous mites have developed strong resistance to amitraz. Previous studies have shown that multiple mechanisms are associated with amitraz resistance in ticks, but very few reports have involved Panonychus citri. We therefore used whole genome sequencing and bulked segregant analysis (BSA) to identify the mechanism underlying P. citri's resistance to amitraz. RESULTS: High-quality assembly of the whole P. citri genome was completed, resulting in a genome of approximately 83.97 Mb and a contig N50 of approximately 1.81 Mb. Gene structure predictions revealed 11 577 genes, of which 10 940 genes were annotated. Trait-associated regions in the genome were mapped with bulked segregant analysis and 38 candidate SNPs were obtained, of which T752C had the strongest correlation with the resistant trait, located at the 5' untranslated region (UTR) of the ß-2R adrenergic-like octopamine receptor gene. The mutation resulted in the formation of a short hairpin loop structure in mRNA and gene expression was down-regulated by more than 50% in the amitraz-resistant strain. Validation of the T752C mutation in field populations of P. citri found that the correlation between the resistance ratio and the base mutation was 94.40%. CONCLUSION: Our results suggest that this 5' UTR mutation of the ß-2R octopamine receptor gene, confers amitraz resistance in P. citri. This discovery provides a new explanation for the mechanism of pest resistance: base mutations in the 5' untranslated region of target gene may regulate the susceptibility of pests to pesticides.


Sujet(s)
Acaricides , Mites (acariens) , Toluidines , Animaux , Mites (acariens)/génétique , Séquençage du génome entier
15.
Bull Entomol Res ; 110(6): 743-755, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-32419680

RÉSUMÉ

Panonychus citri (McGregor) is the most common pest in citrus-producing regions. Special low-toxicity acaricides, such as spirocyclic tetronic acids and mite growth inhibitors, have been used for a long time in China. However, pesticide resistance in mites is a growing problem due to the lack of new acaricide development. Wide-spectrum insecticides, such as amitraz have gained acceptance among fruit growers. An amitraz-resistant strain of P. citri was obtained by indoor screening to examine field resistance monitoring of mites to acaricides and to explore the resistant mechanism of mites against amitraz. The amitraz-resistant strain of P. citri had an LC50 value of 2361.45 mg l-1. The resistance ratio was 81.35 times higher in the resistant strain of P. citri compared with the sensitive strain. Crossing experiments between the sensitive and resistant strains of P. citri were conducted, resulting in a D value of 0.11 for F1 SS♀×RS♂ and 0.06 for F1 RS♀×SS♂. Reciprocal cross experiments showed that the dose-mortality curves for the F1 generations coincided, indicating that the resistance trait was not affected by cytoplasmic inheritance. The dose-expected response relationship was evaluated in the backcross generation and a significant difference was observed compared with the actual value. The above results indicate that the inheritance of resistance trait was incompletely dominant, governed by polygenes on the chromosome. Synergism studies demonstrated that cytochrome P450s and esterase may play important roles in the detoxification of amitraz. Based on differential gene analysis, 23 metabolism-related genes of P. citri were identified, consistent with the results of synergism studies. Real-time PCR verification implied that P450s, ABC transporters, and acetylcholinesterase might influence the detoxification of amitraz by P. citri. These results provide the genetic and molecular foundation for the management of pest mite resistance.


Sujet(s)
Inactivation métabolique/génétique , Tetranychidae/génétique , Tetranychidae/métabolisme , Toluidines , Acaricides , Animaux , Cytochrome P-450 enzyme system , Esterases , Tetranychidae/enzymologie
16.
J Food Biochem ; 44(5): e13171, 2020 05.
Article de Anglais | MEDLINE | ID: mdl-32150765

RÉSUMÉ

Three polysaccharide fractions from bamboo shoot (Chimonobambusa quadrangularis), CPS70, CPS75, and CPS80, were prepared using a final ethanol concentration of 70%, 75%, and 80% in the precipitation process. In vitro digestibility and the prebiotic activity of CPS70, CPS75, and CPS80 were evaluated and compared. The results indicated that all three of the CPS fractions exhibit a high degree of nondigestibility to human gastric juice (>98.5%) or α-amylase hydrolysis (>94.5%). Compared with the blank control, the three CPS fractions could not only significantly (p < .05) stimulate the proliferation of B. adolescentis, B. infantis, B. bifidum, and L. acidophilus, but also significantly (p < .05) enhance the production of lactic, acetic, propionic, and butyric acids when these polysaccharides were added as alternative carbon sources to glucose during the in vitro fermentation of four probiotics. Furthermore, when comparing the three CPS fractions, CPS75 displayed the strongest prebiotic potential, as this polysaccharide had the strongest effect on the proliferation of probiotic bacteria as well as the greatest effect on SCFAs production. These results demonstrated that the concentration of ethanol used during the precipitation process has a significant impact on the prebiotic activity of CPS. PRACTICAL APPLICATIONS: Ethanol precipitation is the first step when extracting polysaccharides from aqueous extracts as it is simple, rapid, and easy to carry out. This study focuses on how different concentrations of ethanol used in the precipitation process affect the prebiotic potential of bamboo shoot (Chimonobambusa quadrangularis) polysaccharides (CPS). The result indicated that the concentration of ethanol used during the precipitation process has a significant impact on the prebiotic activity of CPS. To our knowledge, it is the first to evaluate the effects of the concentration of ethanol during the process of precipitation on prebiotic potential of polysaccharides, which can subsequently be applied to the optimization of ethanol concentration when precipitating natural polysaccharides for the purpose of in vitro fermentation.


Sujet(s)
Éthanol , Prébiotiques , Humains , Masse moléculaire , Poaceae , Polyosides
17.
Pest Manag Sci ; 75(4): 1014-1023, 2019 Apr.
Article de Anglais | MEDLINE | ID: mdl-30221452

RÉSUMÉ

BACKGROUND: Dialeurodes citri is an important pest in citrus-producing areas of the world. Lecanicillium attenuatum parasitizes D. citri and kills it, suggesting a potential approach for the biological control of pests. However, the low virulence of the fungus and its slow rate of killing have limited its commercial competitiveness. The objective reason for these disadvantages is immunological rejection by the host. Our strategy was to use fungi to express the double-stranded RNA (dsRNA) of the host immune genes. The fungal hyphae release siRNA at the time of infection, thus interfering with the expression of immune genes in the host and facilitating fungal invasion. RESULTS: We selected prophenoloxidase (DcPPO), prophenoloxidase-activating factor (DcPPO-AF), and lysozyme (DcLZM) as target genes to construct intron-splicing hairpin RNA expression vectors and to successfully obtain transgenic fungi. Two days after infection, the immune genes of D. citri showed varying degrees of silencing compared with those in the positive control group. The median lethal concentration (LC50 ; spores mL-1 ) values of La::GFP, La::DcPPO, La::DcPPO-AF, and La::DcLZM were 9.63 × 104 , 2.66 × 104 , 1.21 × 105 , and 3.31 × 104 , respectively. The 50% lethal time (LT50 ) values of these fungi were 5.15, 3.60, 5.34, and 4.04 days, respectively. The virulence of La::DcPPO and La::DcLZM increased 3.62- and 2.91-fold, respectively, and their LT50 decreased by 30.10% and 21.55%, respectively. CONCLUSIONS: The results indicate that this method, which uses tens of thousands of hyphae to inject dsRNA to improve the virulence of transgenic fungi, can play a greater role in the prevention and control of pests in the future. © 2018 Society of Chemical Industry.


Sujet(s)
Hemiptera/microbiologie , Hypocreales/physiologie , Protéines d'insecte/génétique , Lutte biologique contre les nuisibles , ARN double brin/génétique , Animaux , Catechol oxidase/génétique , Catechol oxidase/métabolisme , Proenzymes/génétique , Proenzymes/métabolisme , Hemiptera/enzymologie , Hypocreales/enzymologie , Hypocreales/génétique , Lutte contre les insectes , Protéines d'insecte/métabolisme , Micro-organismes génétiquement modifiés/enzymologie , Micro-organismes génétiquement modifiés/génétique , Micro-organismes génétiquement modifiés/physiologie , Lysozyme/génétique , Lysozyme/métabolisme , ARN double brin/métabolisme , Serine endopeptidases/génétique , Serine endopeptidases/métabolisme
18.
Materials (Basel) ; 11(5)2018 May 18.
Article de Anglais | MEDLINE | ID: mdl-29783693

RÉSUMÉ

To study the microstructural evolution in high-strain-rate shear deformation of Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests of hat-shaped specimens have been conducted using a split Hopkinson pressure bar combined with the "strain-frozen" technique. A localized shear band is induced in Ti-55511 alloy in these tests. The experimental results demonstrate that the flow stress in hat-shaped specimens remains constant (about 600 MPa) and is independent of punching depth. The width of the adiabatic shear band increases with increasing punching depth and tends to saturate at 30 µm, and the estimation of the adiabatic shear band (ASB) width in hat-shaped (HS) specimens has been modified. Relying on the experimental results, thermal softening has a minor effect on the onset of the adiabatic shear band and dynamic recrystallization formation, and the nucleation mechanism for dynamic recrystallization is strain-induced boundary migration and subgrain rotation and coalescence. In addition, we suggest the concept of adhesive fracture as the dynamic failure mechanism for Ti-55511 alloy.

19.
Materials (Basel) ; 11(1)2018 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-29303988

RÉSUMÉ

To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

20.
PLoS One ; 11(9): e0162659, 2016.
Article de Anglais | MEDLINE | ID: mdl-27644092

RÉSUMÉ

Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.


Sujet(s)
Citrus/parasitologie , Hemiptera/immunologie , Hemiptera/microbiologie , Hypocreales/immunologie , Animaux , Gènes d'insecte , Hemiptera/génétique , Immunité , Lutte biologique contre les nuisibles , Analyse de séquence d'ARN , Transcriptome
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE