Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Chin Med ; 19(1): 141, 2024 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-39385284

RÉSUMÉ

BACKGROUND: Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Hypericum perforatum (HP) is a traditional herb that has been shown to have antidepressant effects, but its mechanism is unclear. This study aims to identify the molecular targets of HP for the treatment of MDD. METHODS: We performed differential analysis and weighted gene co-expression network analysis (WGCNA) with blood mRNA expression cohort of MDD and healthy control to identify DEGs and significant module genes (gene list 1). Three databases, CTD, DisGeNET, and GeneCards, were used to retrieve MDD-related gene intersections to obtain MDD-predicted targets (gene list 2). The validated targets were retrieved from the TCMSP database (gene list 3). Based on these three gene lists, 13 key pathways were identified. The PPI network was constructed by extracting the intersection of genes and HP-validated targets on all key pathways. Key therapeutic targets were obtained using MCODE and machine learning (LASSO, SVM-RFE). Clinical diagnostic assessments (Nomogram, Correlation, Intergroup expression), and gene set enrichment analysis (GSEA) were performed for the key targets. In addition, immune cell analysis was performed on the blood mRNA expression cohort of MDD to explore the association between the key targets and immune cells. Finally, molecular docking prediction was performed for the targets of HP active ingredients on MDD. RESULTS: Differential expression analysis and WGCNA module analysis yielded 933 potential targets for MDD. Three disease databases were intersected with 982 MDD-predicted targets. The TCMSP retrieved 275 valid targets for HP. Separate enrichment analysis intersected 13 key pathways. Five key targets (AKT1, MAPK1, MYC, EGF, HSP90AA1) were finally screened based on all enriched genes and HP valid targets. Combined with the signaling pathway and immune cell analysis suggested the effect of peripheral immunity on MDD and the important role of neutrophils in immune inflammation. Finally, the binding of HP active ingredients (quercetin, kaempferol, and luteolin) and all 5 key targets were predicted based on molecular docking. CONCLUSIONS: The active constituents of Hypericum perforatum can act on MDD and key targets and pathways of this action were identified.

2.
Sci Rep ; 14(1): 19142, 2024 08 19.
Article de Anglais | MEDLINE | ID: mdl-39160211

RÉSUMÉ

Cancer is one of the most concerning public health issues and breast cancer is one of the most common cancers in the world. The immune cells within the tumor microenvironment regulate cancer development. In this study, single immune cell data sets were used to identify marker gene sets for exhausted CD8 + T cells (CD8Tex) in breast cancer. Machine learning methods were used to cluster subtypes and establish the prognostic models with breast cancer bulk data using the gene sets to evaluate the impacts of CD8Tex. We analyzed breast cancer overexpressing and survival-associated marker genes and identified CD8Tex hub genes in the protein-protein-interaction network. The relevance of the hub genes for CD8 + T-cells in breast cancer was evaluated. The clinical associations of the hub genes were analyzed using bulk sequencing data and spatial sequencing data. The pan-cancer expression, survival, and immune association of the hub genes were analyzed. We identified biomarker gene sets for CD8Tex in breast cancer. CD8Tex-based subtyping systems and prognostic models performed well in the separation of patients with different immune relevance and survival. CRTAM, CLEC2D, and KLRB1 were identified as CD8Tex hub genes and were demonstrated to have potential clinical relevance and immune therapy impact. This study provides a unique view of the critical CD8Tex hub genes for cancer immune therapy.


Sujet(s)
Marqueurs biologiques tumoraux , Tumeurs du sein , Lymphocytes T CD8+ , Humains , Tumeurs du sein/génétique , Tumeurs du sein/immunologie , Tumeurs du sein/anatomopathologie , Femelle , Lymphocytes T CD8+/immunologie , Lymphocytes T CD8+/métabolisme , Marqueurs biologiques tumoraux/génétique , Pronostic , Microenvironnement tumoral/immunologie , Microenvironnement tumoral/génétique , Régulation de l'expression des gènes tumoraux , Cartes d'interactions protéiques/génétique , Apprentissage machine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE