Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 30
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Phylogenet Evol ; 197: 108103, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38754710

RÉSUMÉ

Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.


Sujet(s)
Chytridiomycota , Phylogenèse , Phytoplancton , Chytridiomycota/génétique , Chytridiomycota/classification , Phytoplancton/génétique , Phytoplancton/classification , Génomique
2.
Eur J Protistol ; 93: 126053, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38350179

RÉSUMÉ

We identified two new parasite species of Chytridiomycota isolated during blooms of the dinoflagellate Alexandrium minutum in the coastal Mediterranean Sea. Light and electron microscopy together with molecular characterization of the nuclear 18S, ITS, and 28S rDNA regions led to their identification as two new species, Dinomyces gilberthii and Paradinomyces evelyniae, both belonging to the family Dinomycetaceae, order Rhizophydiales. Dinomyces gilberthii differs from the previously described D. arenysensis by the presence of discharge papillae and the development of a drop-shaped sporangium. Paradinomyces evelyniae differs from the previously described P. triforaminorum by the prominent lipid globule present in early sporangia and by the pointed end producing a rhizoid. The two chytrids differed in their geographical distribution. Dinomyces gilberthii was detected in several Mediterranean habitats, including harbours and beaches, and was particularly prevalent during summer dinoflagellate blooms. Its widespread occurrence in coastal ecosystems suggested a high level of adaptability to this environment. Paradinomyces evelyniae had a more restricted distribution in the coastal-marine environment, occurring in harbour sediments and only occasionally in the water column during winter and early spring. Paradinomyces evelyniae has previously been detected in the Baltic Sea, suggesting that its distribution encompasses contrasting coastal environments, although its presence is rare.


Sujet(s)
Chytridiomycota , Dinoflagellida , Parasites , Animaux , Dinoflagellida/génétique , Écosystème , Chytridiomycota/génétique , Phylogenèse
3.
ISME Commun ; 3(1): 103, 2023 Sep 26.
Article de Anglais | MEDLINE | ID: mdl-37752353

RÉSUMÉ

This study aims to investigate the temporal dynamics of the epiphytic protist community on macroalgae, during the summer months, with a specific focus on fungi, and the interactions between zoosporic chytrid parasites and the proliferation of the dinoflagellates. We employed a combination of environmental sequencing techniques, incubation of natural samples, isolation of target organisms and laboratory experiments. Metabarcoding sequencing revealed changes in the dominant members of the epiphytic fungal community. Initially, fungi comprised < 1% of the protist community, mostly accounted for by Basidiomycota and Ascomycota, but with the emergence of Chytridiomycota during the mature phase of the biofilm, the fungal contribution increased to almost 30%. Chytridiomycota became dominant in parallel with an increase in the relative abundance of dinoflagellates in the community. Microscopy observations showed a general presence of chytrids following the peak proliferation of the dinoflagellate Ostreopsis sp., with the parasite, D. arenysensis as the dominant chytrid. The maximum infection prevalence was 2% indicating host-parasite coexistence. To further understand the in-situ prevalence of chytrids, we characterised the dynamics of the host abundance and prevalence of chytrids through co-culture. These laboratory experiments revealed intraspecific variability of D. arenysensis in its interaction with Ostreopsis, exhibiting a range from stable coexistence to the near-extinction of the host population. Moreover, while chytrids preferentially parasitized dinoflagellate cells, one of the strains examined displayed the ability to utilize pollen as a resource to maintain its viability, thus illustrating a facultative parasitic lifestyle. Our findings not only enrich our understanding of the diversity, ecology, and progression of epiphytic microalgal and fungal communities on Mediterranean coastal macroalgae, but they also shed light on the presence of zoosporic parasites in less-explored benthic habitats.

4.
Harmful Algae ; 120: 102352, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36470607

RÉSUMÉ

A new chytrid genus and species was isolated and cultured from samples obtained in the Baltic Sea during a dinoflagellate bloom event. This species is characterized by having a spherical sporangium without papillae and zoospores of 2-3 µm in diameter that are released through 3 discharge pores. Molecular phylogeny based on ribosomal operon showed its sister position to the Dinomyces cluster in Rhizophydiales. Zoospores lack fenestrated cisternae but contain a paracrystalline inclusion, found in a Rhizophydiales representative for the first time. Additionally, the kinetid features are uncommon for Rhizophydiales and only observed in Dinomyces representatives so far. These morphological features and its phylogenetic relationships justify the description of the new genus and speciesParadinomyces triforaminorum gen. nov. sp. nov. belonging to the family Dinomycetaceae. The chytrid was detected during a high-biomass bloom of the dinoflagellate Kryptoperidinium foliaceum. Laboratory experiments suggest this species is highly specific and demonstrate the impact it can have on HAB development. The chytrid co-occurred with three other parasites belonging to Chytridiomycota (Fungi) and Perkinsea (Alveolata), highlighting that parasitic interactions are common during HABs in brackish and marine systems, and these multiple parasites compete for similar hosts.


Sujet(s)
Alveolata , Chytridiomycota , Dinoflagellida , Phylogenèse , Dinoflagellida/microbiologie
5.
Environ Microbiol ; 24(12): 5951-5965, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36057937

RÉSUMÉ

The interactions of parasitic fungi with their phytoplankton hosts in the marine environment are mostly unknown. In this study, we evaluated the diversity of Chytridiomycota in phytoplankton communities dominated by dinoflagellates at several coastal locations in the NW Mediterranean Sea and demonstrated the most prominent interactions of these parasites with their hosts. The protist community in seawater differed from that in sediment, with the latter characterized by a greater heterogeneity of putative hosts, such as dinoflagellates and diatoms, as well as a chytrid community more diverse in its composition and with a higher relative abundance. Chytrids accounted for 77 amplicon sequence variants, of which 70 were found exclusively among different blooming host species. The relative abundance of chytrids was highest in samples dominated by the dinoflagellate genera Ostreopsis and Alexandrium, clearly indicating the presence of specific chytrid communities. The establishment of parasitoid-host co-cultures of chytrids and dinoflagellates allowed the morphological identification and molecular characterization of three species of Chytridiomycota, including Dinomyces arenysensis, as one of the most abundant environmental sequences, and the discovery of two other species not yet described.


Sujet(s)
Chytridiomycota , Diatomées , Dinoflagellida , Parasites , Animaux , Dinoflagellida/génétique , Dinoflagellida/microbiologie , Chytridiomycota/génétique , Phytoplancton/microbiologie , Diatomées/microbiologie , Mer Méditerranée
6.
Eur J Protistol ; 81: 125835, 2021 Oct.
Article de Anglais | MEDLINE | ID: mdl-34715455

RÉSUMÉ

Thecadinium is a morphologically heterogenous marine benthic genus. Its polyphyly has been discussed. After redefinition of the sensu stricto genus, sensu lato taxa now need reclassification. Heterotrophic, morphologically closely related species were studied in detail. Molecular phylogenetic data for three of the four known species (T. ornatum, T. acanthium, T. ovatum) and new morphological data were obtained, leading to an emended thecal plate pattern, including the presence of an apical pore complex and an additional hypothecal plate. The results confirm the close relationship of the species and justify the description of Carinadinium gen. nov., characterized by the tabulation APC 3/4' 1/0a 6″ 6c 5s 5‴ 2'‴, an epithecal plate of special morphology, an apical flange, a ventral pore, antapical appendages, a descending cingulum and lateral cell flattening. The genus can be separated into two sub-clades, one with a third precingular 'dimple'-plate, four apical and no anterior intercalary plates and the other with a 'multi-pimple'-plate as third precingular or its homolog plate, three apical and one anterior intercalary plate. Carinadinium is phylogenetically related to the planktonic genera Protoceratium, Pentaplacodinium, and Ceratocorys (family Protoceratiaceae), and clearly belongs into the order Gonyaulacales, but with uncertain family affiliation.


Sujet(s)
Dinoflagellida , Dinoflagellida/génétique , Phylogenèse , Plancton
7.
Front Microbiol ; 12: 701196, 2021.
Article de Anglais | MEDLINE | ID: mdl-34421856

RÉSUMÉ

Perkinsea is a phylogenetic group of protists that includes parasites of distantly related hosts. However, its diversity is still mainly composed of environmental sequences, mostly obtained from freshwater environments. Efforts to isolate and culture parasitoids of dinoflagellates have led to the description of several phylogenetically closely related species constituting the Parviluciferaceae family. In this study, two new parasitoid species infecting dinoflagellates during recurrent coastal blooms are reported. Using the ribosomal RNA (rRNA) gene phylogenies, we show that both cluster within Perkinsea, one of them at the base of Parviluciferaceae and the other in a distinct branch unrelated to other described species. The establishment of host-parasite lab cultures of the latter allowed its morphological characterization, resulting in the formal description of Maranthos nigrum gen. nov., sp. nov. The life-cycle development of the two parasitoids is generally the same as that of other members of the Parviluciferaceae family but they differ in the features of the trophont and sporont stages, including the arrangement of zoospores during the mature sporangium stage and the lack of specialized structures that release the zoospores into the environment. Laboratory cross-infection experiments showed that the parasitoid host range is restricted to dinoflagellates, although it extends across several different genera. The maximum prevalence reached in the tested host populations was lower than in other Parviluciferaceae members. The findings from this study suggest that Perkinsea representatives infecting dinoflagellates are more widespread than previously thought.

8.
Mol Ecol ; 30(10): 2417-2433, 2021 05.
Article de Anglais | MEDLINE | ID: mdl-33756046

RÉSUMÉ

Parasites in aquatic systems are highly diverse and ubiquitous. In marine environments, parasite-host interactions contribute substantially to shaping microbial communities, but their nature and complexity remain poorly understood. In this study, we examined the relationship between Perkinsea parasitoids and bloom-forming dinoflagellate species. Our aim was to determine whether parasite-host species interactions are specific and whether the diversity and distribution of parasitoids are shaped by their dinoflagellate hosts. Several locations along the Catalan coast (NW Mediterranean Sea) were sampled during the blooms of five dinoflagellate species and the diversity of Perkinsea was determined by combining cultivation-based methods with metabarcoding of the V4 region of 18S rDNA. Most known species of Parviluciferaceae, and others not yet described, were detected, some of them coexisting in the same coastal location, and with a wide distribution. The specific parasite-host interactions determined for each of the studied blooms demonstrated the host preferences exhibited by parasitoids in nature. The dominance of a species within the parasitoid community is driven by the presence and abundances of its preferred host(s). The absence of parasitoid species, often associated with a low abundance of their preferred hosts, suggested that high infection rates are reached only under conditions that favour parasitoid propagation, especially dinoflagellate blooms.


Sujet(s)
Alveolata , Dinoflagellida , ADN ribosomique , Dinoflagellida/génétique , Interactions hôte-parasite , Mer Méditerranée
9.
Front Microbiol ; 12: 735815, 2021.
Article de Anglais | MEDLINE | ID: mdl-35095782

RÉSUMÉ

The last century has witnessed an increasing rate of new disease emergence across the world leading to permanent loss of biodiversity. Perkinsea is a microeukaryotic parasitic phylum composed of four main lineages of parasitic protists with broad host ranges. Some of them represent major ecological and economical threats because of their geographically invasive ability and pathogenicity (leading to mortality events). In marine environments, three lineages are currently described, the Parviluciferaceae, the Perkinsidae, and the Xcellidae, infecting, respectively, dinoflagellates, mollusks, and fish. In contrast, only one lineage is officially described in freshwater environments: the severe Perkinsea infectious agent infecting frog tadpoles. The advent of high-throughput sequencing methods, mainly based on 18S rRNA assays, showed that Perkinsea is far more diverse than the previously four described lineages especially in freshwater environments. Indeed, some lineages could be parasites of green microalgae, but a formal nature of the interaction needs to be explored. Hence, to date, most of the newly described aquatic clusters are only defined by their environmental sequences and are still not (yet) associated with any host. The unveiling of this microbial black box presents a multitude of research challenges to understand their ecological roles and ultimately to prevent their most negative impacts. This review summarizes the biological and ecological traits of Perkinsea-their diversity, life cycle, host preferences, pathogenicity, and highlights their diversity and ubiquity in association with a wide range of hosts.

10.
Harmful Algae ; 100: 101944, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33298365

RÉSUMÉ

Perkinsea are a group of intracellular protist parasites that inhabit all types of aquatic environments and cause significant population declines of a wide variety of hosts. However, the diversity of this lineage is mostly represented by environmental rDNA sequences. Complete descriptions of Perkinsea that infect marine dinoflagellates have increased in recent literature due to the identification, isolation and culturing of representatives during bloom events, contributing to expand the knowledge on the diversity and ecology of the group. Shallow coastal areas in the Baltic Sea suffer seasonal dinoflagellate blooms. In summer 2016, two parasitoids were isolated during a Kryptoperidinium foliaceum bloom in the Baltic Sea. Morphological features and sequences of the small and large subunit of the ribosomal DNA gene revealed these two parasitoids were new species that belong to the genus Parvilucifera. This is the first time that Parvilucifera infections are reported in the Inner Baltic Sea. The first species, Parvilucifera sp. has some morphological and phylogenetic features in common with P. sinerae and P. corolla, although its ultrastructure could not be studied and the formal description could not be done. The second new species, named Parvilucifera catillosa, has several distinct morphological features in its zoospores (e.g. the presence of a rostrum), and in the shape and size of the apertures in the sporangium stage, which are larger and more protuberant than in the other species of the genus. Infections observed in the field and cross-infection experiments determined that the host range of both Parvilucifera species was restricted to dinoflagellates, each one showing a different host preference. The coexistence in the same environment by the two closely related parasitoids with very similar life cycles suggests that their niche separation is the preferred host.


Sujet(s)
Alveolata , Dinoflagellida , Animaux , ADN ribosomique/génétique , Étapes du cycle de vie , Phylogenèse
11.
Mar Pollut Bull ; 160: 111691, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-33181960

RÉSUMÉ

High-throughput sequencing of microbial assemblages has been proposed as an alternative methodology to the traditional ones used in marine monitoring and environmental assessment. Here, we evaluated pico- and nanoplankton diversity as ecological indicators in NW Mediterranean coastal waters by comparing their diversity in samples subjected to varying degrees of continental pressures. Using metabarcoding of the 16S and 18S rRNA genes, we explored whether alphadiversity indices, abundance of Operational Taxonomic Units and taxonomic groups (and their ratios) provide information on the ecological quality of coastal waters. Our results revealed that only eukaryotic diversity metrics and a limited number of prokaryotic and eukaryotic taxa displayed potential in assessing continental influences in our surveyed area, resulting thus in a restrained potential of microbial plankton diversity as an ecological indicator. Therefore, incorporating microbial plankton diversity in environmental assessment could not always result in a significant improvement of current marine monitoring strategies.


Sujet(s)
Biodiversité , Plancton , Eucaryotes , Séquençage nucléotidique à haut débit , ARN ribosomique 18S/génétique
12.
Harmful Algae ; 98: 101902, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-33129459

RÉSUMÉ

A recently published study analyzed the phylogenetic relationship between the genera Centrodinium and Alexandrium, confirming an earlier publication showing the genus Alexandrium as paraphyletic. This most recent manuscript retained the genus Alexandrium, introduced a new genus Episemicolon, resurrected two genera, Gessnerium and Protogonyaulax, and stated that: "The polyphyly [sic] of Alexandrium is solved with the split into four genera". However, these reintroduced taxa were not based on monophyletic groups. Therefore this work, if accepted, would result in replacing a single paraphyletic taxon with several non-monophyletic ones. The morphological data presented for genus characterization also do not convincingly support taxa delimitations. The combination of weak molecular phylogenetics and the lack of diagnostic traits (i.e., autapomorphies) render the applicability of the concept of limited use. The proposal to split the genus Alexandrium on the basis of our current knowledge is rejected herein. The aim here is not to present an alternative analysis and revision, but to maintain Alexandrium. A better constructed and more phylogenetically accurate revision can and should wait until more complete evidence becomes available and there is a strong reason to revise the genus Alexandrium. The reasons are explained in detail by a review of the available molecular and morphological data for species of the genera Alexandrium and Centrodinium. In addition, cyst morphology and chemotaxonomy are discussed, and the need for integrative taxonomy is highlighted.


Sujet(s)
Dinoflagellida , Phylogenèse
13.
Harmful Algae ; 97: 101855, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32732049

RÉSUMÉ

In this study, the field ecology of Kryptoperidinium sp. was examined in two Mediterranean shallow lagoons, Calich (CA) and Santa Giusta (SG) in Sardinia, Italy. Kryptoperidinium cell density and the environmental conditions were examined monthly from 2008 to 2015 in CA and from 2011 to 2016 in SG. Cell morphology was determined by observing specimens taken from the field and from cultures that were established by single-cell isolation from samples collected in the two lagoons. The molecular identity of strains from each lagoon was also ascertained. The growth rates of the strains were determined under three different temperature conditions and six salinity treatments. The two wild populations shared the same morphology and the cultured strains were morphologically and molecularly identical. The SSU and 5.8S phylogenies show the presence of two clusters within the available Kryptoperidinium sequences and the strains obtained in this study clustered with others from the Mediterranean and Baltic. The multiannual dynamics of Kryptoperidinium sp. in the field significantly differed in the two lagoons, showing much higher cell densities in CA than in SG. The presence of Kryptoperidinium sp. was detected throughout the year in CA, with recurrent blooms also affecting the adjacent coastal area. In contrast, Kryptoperidinium sp. was sporadically observed in SG. The variation in the environmental parameters was fairly wide during the presence and blooms of Kryptoperidinium sp., especially in CA. The application of Generalized Linear Models to the field data revealed a significant role of rainfall and dissolved inorganic nitrogen on the presence and blooms of the species. Although growth rates were similar between the two strains, significant differences were detected for the 10 and 40 salinity treatments. The results obtained in this study add to our knowledge about the ecology of a harmful species that is not well understood in transitional ecosystems such as Mediterranean lagoons.


Sujet(s)
Dinoflagellida , Écosystème , Dinoflagellida/génétique , Italie , Phylogenèse , Salinité
14.
Environ Microbiol Rep ; 12(3): 314-323, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32157805

RÉSUMÉ

Massive amplicon sequencing approaches to characterize the diversity of microbial eukaryotes in sediments are scarce and controls about the effects introduced by different methods to recover DNA are lacking. In this study, we compare the performance of the melting seawater-ice elution method on the characterization of benthic protist communities by 18S rRNA gene metabarcoding with results obtained by direct cell lysis and DNA purification from sediments. Even though the most abundant operational taxonomic units were recovered by both methods, eluted samples yielded higher richness than samples undergoing direct lysis. Both treatments allowed recovering the same taxonomic groups, although we observed significant differences in terms of relative abundance for some of them. Dinoflagellata and Ciliophora strongly dominated the community in eluted samples (> 80% reads). In directly lysed samples, they only represented 37%, while groups like Fungi and Ochrophytes were highly represented (> 20% reads respectively). Our results show that the elution process yields a higher protist richness estimation, most likely as a result of the higher sample volume used to recover organisms as compared to commonly used volumes for direct benthic DNA purification. Motile groups, like dinoflagellates and ciliates, are logically more enriched during the elution process.


Sujet(s)
Eucaryotes , Métagénomique/méthodes , Eau de mer/microbiologie , Biodiversité , Ciliophora/génétique , Ciliophora/isolement et purification , Dinoflagellida/génétique , Dinoflagellida/isolement et purification , Eucaryotes/génétique , Eucaryotes/isolement et purification , Champignons/génétique , Champignons/isolement et purification , Sédiments géologiques/microbiologie , ARN ribosomique 18S/génétique
15.
J Phycol ; 56(3): 798-817, 2020 06.
Article de Anglais | MEDLINE | ID: mdl-32142158

RÉSUMÉ

Marine benthic dinoflagellates are interesting not only because some epiphytic genera can cause harmful algal blooms but also for understanding dinoflagellate evolution and diversification. Our understanding of their biodiversity is far from complete, and many thecate genera have unusual tabulation patterns that are difficult to relate to the diverse known phytoplankton taxa. A new sand-dwelling genus, Pachena gen. nov., is described based on morphological and DNA sequence data. Three species were discovered in distant locations and are circumscribed, namely, P. leibnizii sp. nov. from Canada, P. abriliae sp. nov. from Spain, and P. meriddae sp. nov. from Italy. All species are tiny (about 9-23 µm long) and heterotrophic. Species are characterized by their tabulation (APC 4' 3a 6'' 5c 5s 5''' 2''''), an apical hook covering the apical pore, an ascending cingulum, and a sulcus with central list. The first anterior intercalary plate is uniquely "sandwiched" between two plates. The species share these features and differ in the relative sizes and arrangements of their plates, especially on the epitheca. The ornamentation of thecal plates is species-specific. The new molecular phylogenies based on SSU and LSU rDNA sequences contribute to understanding the evolution of the planktonic relatives of Pachena, the Thoracosphaeraceae.


Sujet(s)
Dinoflagellida , Canada , ADN ribosomique/génétique , Dinoflagellida/génétique , Italie , Phylogenèse , Espagne
16.
J Phycol ; 56(1): 68-84, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-31642062

RÉSUMÉ

Amphidiniopsis is a diverse genus of thecate heterotrophic dinoflagellates within the benthic, sand-dwelling species, with more than 20 currently described. Although molecular information about members of this genus is still scarce, morphological heterogeneity suggests the genus is paraphyletic. We investigated the diversity of Amphidiniopsis species in the NW Mediterranean Sea by morphological and molecular approaches, which led to the description of three new species, A. bulla sp. nov., A. erinacea sp. nov., and A. selene sp. nov. Phylogenetic reconstructions based on SSU and LSU rDNA sequences obtained from individual cells and the observed morphological characters confirm, as previously suggested, the paraphyly of the genus and the existence of at least four phylogenetic subgroups, instead of the three main subgroups defined to date. We also morphologically characterized Herdmania litoralis, suggesting the existence of more than one species belonging to this monotypic genus. Herdmania is a sister taxon to Amphidiniopsis, both morphologically and phylogenetically, and given the paraphyly of the latter, it should be considered a member of the newly termed Amphidiniopsis genus complex. The finding of the three new species highlights that the Mediterranean harbors distinctive, sand-dwelling dinoflagellates and needs further investigations of its unexplored diversity.


Sujet(s)
Dinoflagellida/génétique , ADN ribosomique , Mer Méditerranée , Phylogenèse
17.
Harmful Algae ; 84: 161-171, 2019 04.
Article de Anglais | MEDLINE | ID: mdl-31128800

RÉSUMÉ

The heterotrophic sand-dwelling dinoflagellate Thecadinium inclinatum has been re-examined by light and scanning electron microscopy in order to resolve the discrepancies on its plate pattern from the literature, and to obtain its phylogenetic information single-cell PCR technique has been used. The comparison of morphological and molecular information available for other Thecadinium species confirms the genus is polyphyletic and T. inclinatum seems not related to other representatives of the genus sensu lato. Thus, a new genus and combination for the species, Psammodinium inclinatum gen. nov., comb. nov. is proposed. Cells are heterotrophic and strongly laterally flattened, with sulcal pocket. The revised tabulation is: APC 3' 7" 7c 7s? 5"' 1p 2"" with a long-shank fishhook-shaped apical pore and descending cingulum. The cingulum inclines ventrally and declines on the right lateral side producing an asymmetrical epitheca. The epitheca is much smaller than the hypotheca. The phylogenetic results showed a strong relationship with the autotrophic epiphytic genera Gambierdiscus and Fukuyoa, being closely related with the latter. The Gambierdiscus species typically have a tropical and sub-tropical distribution and produce ciguatoxins, causing thousands of intoxications every year by consumption of contaminated fish. Fukuyoa representatives have a wider distribution including warm and temperate waters, and it has been demonstrated that they are also able to produce ciguatoxins, even though at lower amounts. P. inclinatum, which potential toxicity remains to be determined, represents an interesting independent evolutionary branch that resulted in the loss of chloroplasts, the strong lateral compression and the adaptation to sandy habitats in temperate and cold waters.


Sujet(s)
Ciguatoxines , Dinoflagellida , Animaux , Phylogenèse
18.
Mol Ecol ; 28(5): 923-935, 2019 03.
Article de Anglais | MEDLINE | ID: mdl-30411822

RÉSUMÉ

How much temporal recurrence is present in microbial assemblages is still an unanswered ecological question. Even though marked seasonal changes have been reported for whole microbial communities, less is known on the dynamics and seasonality of individual taxa. Here, we aim at understanding microbial recurrence at three different levels: community, taxonomic group and operational taxonomic units (OTUs). For that, we focused on a model microbial eukaryotic community populating a long-term marine microbial observatory using 18S rRNA gene data from two organismal size fractions: the picoplankton (0.2-3 µm) and the nanoplankton (3-20 µm). We have developed an index to quantify recurrence in particular taxa. We found that community structure oscillated systematically between two main configurations corresponding to winter and summer over the 10 years studied. A few taxonomic groups such as Mamiellophyceae or MALV-III presented clear recurrence (i.e., seasonality), whereas 13%-19% of the OTUs in both size fractions, accounting for ~40% of the relative abundance, featured recurrent dynamics. Altogether, our work links long-term whole community dynamics with that of individual OTUs and taxonomic groups, indicating that recurrent and non-recurrent changes characterize the dynamics of microbial assemblages.


Sujet(s)
Biodiversité , Plancton/génétique , ARN ribosomique 18S/génétique , Eucaryotes/génétique , Microbiote , Taille de particule , Phylogenèse
19.
Front Microbiol ; 8: 1594, 2017.
Article de Anglais | MEDLINE | ID: mdl-28970818

RÉSUMÉ

Parasites are one of the ecologically most relevant groups of marine food webs, but their taxonomic and biological complexity hampers the assessment of their diversity and evolutionary trends. Moreover, the within-host processes that govern parasitoid infection, development and reproduction are often unknown. In this study, we describe a new species of a perkinsozoan endoparasitoid that infects the toxic dinoflagellate Dinophysis sacculus, by including observations of its morphology, ultrastructure, life-cycle development and phylogeny. The SSU rDNA sequence and main morphological features were also obtained for a second parasitoid species infecting the bloom-forming dinoflagellate Levanderina fissa. Phylogenetic analyses including the sequences obtained show that all known Perkinsozoa species infecting dinoflagellates cluster together. However, sequences of Parvilucifera prorocentri and those obtained in this study cluster at the base of the clade, while the rest of Parvilucifera representatives form a separated highly-supported cluster. These results, together with differing morphological characters like the formation of a germ-tube, the presence of trichocysts, or the heterochromatin presence in zoospores nucleus justify the erection of Dinovorax pyriformis gen. nov. et sp. nov., and Snorkelia prorocentri gen. nov. et comb. nov. (=Parvilucifera prorocentri). The morphological features and phylogenetic position of these parasitoids represent ancestral characters for the Perkinsozoa phylum, and also for Dinozoa clade, allowing the inference of the evolutionary framework of these Alveolata members.

20.
Front Microbiol ; 8: 1624, 2017.
Article de Anglais | MEDLINE | ID: mdl-28912757

RÉSUMÉ

Dinoflagellate blooms are natural phenomena that often occur in coastal areas, which in addition to their large number of nutrient-rich sites are characterized by highly restricted hydrodynamics within bays, marinas, enclosed beaches, and harbors. In these areas, massive proliferations of dinoflagellates have harmful effects on humans and the ecosystem. However, the high cell density reached during blooms make them vulnerable to parasitic infections. Under laboratory conditions parasitoids are able to exterminate an entire host population. In nature, Parvilucifera parasitoids infect the toxic dinoflagellate Alexandrium minutum during bloom conditions but their prevalence and impact remain unexplored. In this study, we evaluated the in situ occurrence, prevalence, and dynamics of Parvilucifera parasitoids during recurrent blooms of A. minutum in a confined site in the NW Mediterranean Sea as well as the contribution of parasitism to bloom termination. Parvilucifera parasitoids were recurrently detected from 2009 to 2013, during seasonal outbreaks of A. minutum. Parasitic infections in surface waters occurred after the abundance of A. minutum reached 104-105 cells L-1, suggesting a density threshold beyond which Parvilucifera transmission is enhanced and the number of infected cells increases. Moreover, host and parasitoid abundances were not in phase. Instead, there was a lag between maximum A. minutum and Parvilucifera densities, indicative of a delayed density-dependent response of the parasitoid to host abundances, similar to the temporal dynamics of predator-prey interactions. The highest parasitoid prevalence was reached after a peak in host abundance and coincided with the decay phase of the bloom, when a maximum of 38% of the A. minutum population was infected. According to our estimates, Parvilucifera infections accounted for 5-18% of the total observed A. minutum mortality, which suggested that the contribution of parasitism to bloom termination is similar to that of other biological factors, such as encystment and grazing.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE