Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
1.
Molecules ; 29(2)2024 Jan 19.
Article de Anglais | MEDLINE | ID: mdl-38276575

RÉSUMÉ

The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.


Sujet(s)
Complexes de coordination , Gallium , Thiosemicarbazones , Gallium/pharmacologie , Gallium/composition chimique , Indium/composition chimique , Thiosemicarbazones/composition chimique , Ligands , Spectroscopie par résonance magnétique , Complexes de coordination/composition chimique
2.
One Health ; 17: 100632, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38024261

RÉSUMÉ

Antimicrobial resistance (AMR) is a risk for public health that requires management in a One Health perspective, including humans, animals, and the environment. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical issue regards resistance to the Critically Important Antimicrobials (CIAs), such as ß-lactams antibiotics. Here, pigs were analysed along the entire food producing chain, including feces, carcasses and pork products (fresh meat, fermented and seasoned products) ensuring treaciability of all samples. Escherichia coli were isolated and their ability to produce ESBL and AmpC ß-lactamases was evaluated both phenotypically and genotypically. Strains with the same AMR profile from feces, carcasses, and meat products were selected for phylogenetic and comparative genomic analyses to evaluate the possible "farm-to-fork" transmission of ß-lactams resistant bacteria. Results showed that the percentage of ESBL strains in fecal E. coli was approximately 7% and increased slightly in the pork food chain: the 10% of ESBL E. coli isolated from carcasses and the 12.5% of isolates from fresh meat products. AmpC E. coli were found only in feces, carcasses, and fresh meat with a low prevalence. Results showed that of the 243 pigs followed along the entire food chain genetic similarities in E. coli isolated from farm-to-fork were found in only one pig (feces, carcasses and fresh meat). Frequent similarities were shown in resistant E. coli isolates from carcasses and fresh meat or fermented product (three pork food chain). Moreover, in one case, bacteria isolated from fresh meat and fermented product were genotypically similar. Concluding, direct transmission of ß-lactams resistance from farm-to-fork is possible but not frequent. Further studies are needed to improve risk communication to consumers and access to clear and reliable information and health concerns on food.

3.
Antibiotics (Basel) ; 12(2)2023 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-36830287

RÉSUMÉ

Antimicrobial resistance (AMR) is a public health risk that needs to be faced from a One Health perspective that includes humans, animals, and environmental health. The food production chain has been identified as a possible route of transmission of AMR bacteria to humans. The most critical phenomenon is related to Critically Important Antimicrobial (CIA) resistance. ß-lactams antibiotics (cephalosporin of 3rd, 4th generation, carbapenem, monobactams, and penicillins), quinolones, aminoglycosides, polymyxin, and glycylcyclines were the CIAs chosen in this study. Samples derived from all the stages of the pork food production chain were collected, including pig feces, carcasses, and pork food products (fresh meat, fermented, and seasoned). Escherichia coli were isolated, and AMR and MDR profiles were evaluated. Enterobacterial Repetitive Intragenic Consensus (ERIC-PCR) was used to evaluate phylogenetic similarities. Data showed that 50% of phenotypical AMR observed in the entire pork food chain were related phylogenetically. The contamination of fresh meat, in half of the cases, was not directly related to contamination from feces or carcasses. Despite this, some similarities were found between feces and carcasses. In group analysis, phylogenetic similarities were detected in a 3/36 cluster (8.3%). Nevertheless, further studies are needed to improve consumer risk communication and access to clear and reliable information and health concerns on food labels.

4.
Foods ; 11(22)2022 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-36429254

RÉSUMÉ

Antimicrobial-resistant foodborne microorganisms may be transmitted from food producing animals to humans through the consumption of meat products. In this study, meat that was derived from farmed pigs and wild boars was analyzed and compared. Escherichia coli (E. coli) were isolated and tested phenotypically and genotypically for their resistance to quinolones, aminoglycosides and carbapenems. The co-presence of AMR-associated plasmid genes was also evaluated. A quinolone AMR phenotypic analysis showed 41.9% and 36.1% of resistant E. coli derived from pork and wild boars meat, respectively. A resistance to aminoglycosides was detected in the 6.6% of E. coli that was isolated from pork and in 1.8% of the wild boar meat isolates. No resistant profiles were detected for the carbapenems. The quinolone resistance genes were found in 58.3% of the phenotypically resistant pork E. coli and in 17.5% of the wild boar, thus showing low genotypic confirmation rates. The co-presence of the plasmid-related genes was observed only for the quinolones and aminoglycosides, but not for the carbapenems. Wild boar E. coli were the most capable to perform biofilm production when they were compared to pork E. coli. In conclusion, the contamination of pork and wild boar meat by AMR microorganisms could be a threat for consumers, especially if biofilm-producing strains colonize the surfaces and equipment that are used in the food industry.

5.
Metallomics ; 14(10)2022 10 11.
Article de Anglais | MEDLINE | ID: mdl-36073748

RÉSUMÉ

Many bacterial strains are developing mechanism of resistance to antibiotics, rendering last-resort antibiotics inactive. Therefore, new drugs are needed and in particular metal-based compounds represent a valid starting point to explore new antibiotic classes. In this study, we have chosen to investigate gallium(III) complexes for their potential antimicrobial activity against different strains of Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa which have developed different type of resistance mechanism, including the expression of ß-lactamases (NDM-1, ESßL, or AmpC) or the production of biofilm. We studied a series of thiosemicarbabazones derived from pyridoxal, their related Ga(III) complexes, and the speciation in solution of the Ga(III)/ligand systems as a function of the pH. Proton dissociation constants and conditional stability constants of Ga(III) complexes were evaluated by UV/Vis spectroscopy, and the most relevant species at physiological pH were identified. The compounds are active against resistant Gram-negative strain with minimal inhibitory concentration in the µM range, while no cytotoxicity was detected in eukaryotic cells.


Sujet(s)
Gallium , Antibactériens/pharmacologie , Escherichia coli , Gallium/composition chimique , Gallium/pharmacologie , Bactéries à Gram négatif , Ligands , Protons , Pyridoxal/analogues et dérivés , Thiosemicarbazones , bêta-Lactamases
6.
Ital J Food Saf ; 11(2): 9972, 2022 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-35795463

RÉSUMÉ

The European Food Safety Authority and European Centre of Disease Prevention and Control antimicrobial resistance report published in 2021 shows increasing levels of antimicrobial resistance in Salmonella against antibiotics of choice for human salmonellosis (s-lactams and fluoroquinolones). The aim of the study was to follow the evolution of resistance against some Critical Important Antimicrobials in Salmonella isolates from fresh pork collected in Emilia-Romagna region, northern Italy, over two decades. Emilia-Romagna region is characterized by production of well-known pork derived products, as Parma Ham. The samples were collected in three different periods, ranging from 2000 to 2003, 2012 to 2016 and 2018 to 2021. After serotyping, the isolates were phenotypically tested for resistance to three classes of antibiotics: s-lactams, fluoroquinolones and polymyxins. End-point polymerase chain reaction (PCR) and PCRReal Time were used for genotypical analyses. The phenotypical resistance to s-lactams and fluoroquinolones were clearly increasing when comparing the results obtained from isolates collected in the first period (16.7% and 16.7%, respectively) with those of the third period (29.7% and 32.4%, respectively). On the contrary, the resistance to colistin decreased from 33.3% to 5.4%. Genotypically, the 71.4% and 83.3% of the strains harboured s-lactams and fluoroquinolones genes, respectively, while colistin resistance genes were not detected in the phenotypically resistant strains.

7.
J Inorg Biochem ; 234: 111887, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35690039

RÉSUMÉ

Resistant bacteria represent an urgent worldwide threat. NDM-1-producing strains are rendering the last line antibiotics less effective. Six bismuth complexes of general formula BiLCl2, where L is a thiosemicarbazone bearing a quinoline moiety, have been synthesized and fully characterized, including their X-ray crystal structures. The synergistic relationship between the compounds and meropenem have been tested in a combination therapy in carbapenem-resistant Klebsiella pneumoniae (NTCT14331) carrying the NDM-1 gene. Quinoline-2-carboxaldehyde-N4-phenyl-3-thiosemicarbazone bismuth dichloride and carbapenem showed synergism in a dose dependent manner with negligible antibacterial activity when used in a monotherapy and could restore antibiotic sensitivity in the strain producing NDM-1 enzyme. The minimum inhibitory concentration (MIC) of meropenem lowered down 128 folds up to 2 µgmL-1, a concentration lower to the sensitivity level. The IC50 of the compound against A549 human lung carcinoma cells and HuDe human epithelial tissue was 46.96 ± 16.66 µM and 54.26 ± 9.89 µM respectively. The cytotoxicity against human cells was higher than the effective concentration needed for the synergistic effect in bacterial cells, indicating that a structural optimization of the compounds is needed.


Sujet(s)
Quinoléines , Thiosemicarbazones , Antibactériens/composition chimique , Antibactériens/pharmacologie , Bismuth/pharmacologie , Carbapénèmes/pharmacologie , Humains , Klebsiella pneumoniae , Méropénème/pharmacologie , Tests de sensibilité microbienne , Quinoléines/pharmacologie , Thiosemicarbazones/pharmacologie , bêta-Lactamases/génétique
8.
Antibiotics (Basel) ; 11(6)2022 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-35740183

RÉSUMÉ

This study is focused on resistance to carbapenems and third-generation cephalosporins in Gram-negative microorganisms isolated from swine, whose transmission to humans via pork consumption cannot be excluded. In addition, the common carriage of carbapenem-resistant (CR) bacteria between humans and pigs was evaluated. Sampling involved 300 faecal samples collected from slaughtered pigs and 300 urine samples collected from 187 hospitalised patients in Parma Province (Italy). In swine, MIC testing confirmed resistance to meropenem for isolates of Pseudomonas aeruginosa and Pseudomonas oryzihabitans and resistance to cefotaxime and ceftazidime for Escherichia coli, Ewingella americana, Enterobacter agglomerans, and Citrobacter freundii. For Acinetobacter lwoffii, Aeromonas hydrofila, Burkolderia cepacia, Corynebacterium indologenes, Flavobacterium odoratum, and Stenotrophomonas maltophilia, no EUCAST MIC breakpoints were available. However, ESBL genes (blaCTXM-1, blaCTX-M-2, blaTEM-1, and blaSHV) and AmpC genes (blaCIT, blaACC, and blaEBC) were found in 38 and 16 isolates, respectively. P. aeruginosa was the only CR species shared by pigs (4/300 pigs; 1.3%) and patients (2/187; 1.1%). P. aeruginosa ST938 carrying blaPAO and blaOXA396 was detected in one pig as well as an 83-year-old patient. Although no direct epidemiological link was demonstrable, SNP calling and cgMLST showed a genetic relationship of the isolates (86 SNPs and 661 allele difference), thus suggesting possible circulation of CR bacteria between swine and humans.

9.
Microorganisms ; 9(2)2021 Jan 21.
Article de Anglais | MEDLINE | ID: mdl-33494307

RÉSUMÉ

A global increase in Escherichia coli (E. coli) resistant to cephalosporins (extended-spectrum ß-lactamases (ESßLs) and AmpC ß-lactamases) has been recorded in the last 20 years. Similarly, several studies have reported the spread of colistin resistance in Enterobacteriaceae isolated from food and the environment. The aim of the present study was to evaluate the prevalence of ESßL, AmpC and colistin-resistant E. coli isolated from pork and wild boar meat products in the Emilia Romagna region (North Italy). The isolates were analysed phenotypically (considering both resistant and intermediate profiles) and genotypically. The prevalence of genotypically confirmed ESßL and AmpC E. coli was higher in pork meat products (ESßL = 11.1% vs. AmpC = 0.3%) compared to wild boar meat (ESßL = 6.5% vs. AmpC = 0%). Intermediate profiles for cefotaxime (CTX) and ceftazidime (CAZ) were genotypically confirmed as ESßL in pork meat isolates but not for wild boar. Four E. coli from wild boar meat were resistant to colistin but did not harbour the mcr-1 gene. E. coli isolated from wild boar meat seem to show aspecific antimicrobial resistance mechanisms for cephalosporins and colistin. The prevalence of resistant isolates found in wild boar is less alarming than in pork from farmed domestic pigs. However, the potential risk to consumers of these meat products will require further investigations.

10.
Microb Drug Resist ; 26(9): 1081-1089, 2020 Sep.
Article de Anglais | MEDLINE | ID: mdl-32240057

RÉSUMÉ

Antimicrobial resistance (AMR) in bacteria is a frequent and widespread phenomenon. The European Food Safety Authority (EFSA) reports that multidrug resistant (MDR) Escherichia coli is considered an important hazard to public health. The lack of data on the correlation between the administration of antibiotics to pigs and the diffusion of MDR E. coli necessitates an in-depth study. The aims of our study were first of all to determine the presence of MDR and/or extended spectrum ß-lactamase (ESßL) E. coli isolated from feces and carcasses of pigs; and second, to evaluate the correlation between antibiotic resistance and the antibiotic treatment administrated to the animals considered. The examined E. coli was isolated from 100 fecal swabs and 100 carcass sponges taken from farms and slaughterhouses located in Reggio Emilia province in Italy. The MDR isolates were tested following the protocol defined by EUCAST (2015). Subsequently, a real-time PCR and an endpoint-PCR were used for the genomic analysis. Data highlighted 76.5% of MDR E. coli with a marked presence of the ampicillin (AMP)-streptomycin (STRE)-tetracycline (TETRA) pattern. Moreover, 13 isolates were ESßL producers, and the blaCTXM gene was the most frequently observed in genomic analysis. Results confirm the complexity of the AMR phenomenon showing a partial correlation between the administration of antibiotics and the resistance observed. Pigs destined to the production of Protected Designation of Origin items are colonized by bacteria resistant to a wide range of antibiotic classes even if data are encouraging for colistin and third generation cephalosporin. Furthermore, in-depth study focused on food production could be useful in a view of high safety standards for consumers.


Sujet(s)
Antibactériens/pharmacologie , Multirésistance bactérienne aux médicaments/génétique , Infections à Escherichia coli/médecine vétérinaire , Escherichia coli/effets des médicaments et des substances chimiques , Viande/microbiologie , bêta-Lactamases/génétique , Abattoirs , Aminosides/pharmacologie , Animaux , Escherichia coli/enzymologie , Escherichia coli/génétique , Escherichia coli/isolement et purification , Infections à Escherichia coli/épidémiologie , Infections à Escherichia coli/microbiologie , Fèces/microbiologie , Microbiologie alimentaire , Expression des gènes , Italie/épidémiologie , Quinolinone/pharmacologie , Sulfonamides/pharmacologie , Suidae/microbiologie , Tétracyclines/pharmacologie , bêta-Lactamases/métabolisme , bêta-Lactames/pharmacologie
11.
J Food Prot ; 83(2): 233-240, 2020 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-31934774

RÉSUMÉ

ABSTRACT: Escherichia coli is a ubiquitous organism capable of forming a biofilm. This is an important virulence factor and is critical in certain diseases and in the development of antibiotic resistance, which is increased by biofilm synthesis. In the present study, the potential health risk associated with handling and consumption of foods of animal origin contaminated with E. coli-producing biofilm was evaluated. We analyzed the ability of 182 E. coli strains isolated from pork, poultry, and beef, purchased in three different supermarkets in the area of the "Italian Food Valley" (Parma, northern Italy), to form biofilms. Positive strains were also tested for the presence of 12 biofilm-associated genes. Moreover, the 182 E. coli were characterized for antibiotic resistance, presence of multidrug resistance, extended-spectrum ß-lactamase strains, and phylogenetic diversity through PCR. Twenty-five percent of the isolates produced biofilm. The majority showed weak adherence, five were moderate, and three were strong producers. E. coli with a strong adherence capability (three of three) harbored eight biofilm-associated genes, while weak and moderate producers harbored only five (frequencies ranging from 80 to 100%). Multidrug resistance was observed in 20 biofilm-producing E. coli, and 15 of these belonged to phylogenetic group D. Among nonbiofilm producers, the percentage of strains belonging to phylogenetic groups B2 and D was approximately 40%, highlighting a potential health risk for consumers and people handling contaminated products. The present study underlines the importance of monitoring the prevalence and characteristics of E. coli contaminating retail meat in relation to the potential virulence highlighted here.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...