Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Psychiatry ; 23(7): 1555-1565, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-28461695

RÉSUMÉ

The hippocampus and the medial prefrontal cortex (mPFC) are traditionally associated with regulating memory and executive function, respectively. The contribution of these brain regions to food intake control, however, is poorly understood. The present study identifies a novel neural pathway through which monosynaptic glutamatergic ventral hippocampal field CA1 (vCA1) to mPFC connectivity inhibits food-motivated behaviors through vCA1 glucagon-like peptide-1 receptor (GLP-1R). Results demonstrate that vCA1-targeted RNA interference-mediated GLP-1R knockdown increases motivated operant responding for palatable food. Chemogenetic disconnection of monosynaptic glutamatergic vCA1 to mPFC projections using designer receptors exclusively activated by designer drugs (DREADDs)-mediated synaptic silencing ablates the food intake and body weight reduction following vCA1 GLP-1R activation. Neuropharmacological experiments further reveal that vCA1 GLP-1R activation reduces food intake and inhibits impulsive operant responding for palatable food via downstream communication to mPFC NMDA receptors. Overall these findings identify a novel neural pathway regulating higher-order cognitive aspects of feeding behavior.


Sujet(s)
Consommation alimentaire/physiologie , Comportement alimentaire/physiologie , Glucagon-like peptide 1/physiologie , Animaux , Région CA1 de l'hippocampe/physiologie , Comportement alimentaire/effets des médicaments et des substances chimiques , Aliments , Glucagon-like peptide 1/métabolisme , Récepteur du peptide-1 similaire au glucagon/génétique , Récepteur du peptide-1 similaire au glucagon/physiologie , Hippocampe/physiologie , Mâle , Motivation/physiologie , Voies nerveuses/physiologie , Cortex préfrontal/physiopathologie , Rats , Rat Sprague-Dawley , Transduction du signal/physiologie
2.
Nature ; 402(6758): 199-203, 1999 Nov 11.
Article de Anglais | MEDLINE | ID: mdl-10647014

RÉSUMÉ

Calcium/calmodulin-dependent serine/threonine kinase type II (CaMKII) is one of the most abundant proteins in the mammalian brain, where it is thought to regulate synaptic plasticity and other processes. Activation of the multisubunit kinase by calcium is effectively cooperative and can persist long after transient calcium rises. Despite extensive biochemical characterization of CaMKII and identification of numerous in vitro kinase targets, little is known about its function in vivo. Here we report that unc-43 encodes the only Caenorhabditis elegans CaMKII. A gain-of-function unc-43 mutation reduces locomotory activity, alters excitation of three muscle types and lengthens the period of the motor output of a behavioural clock. Null unc-43 mutations cause phenotypes generally opposite to those of the gain-of-function mutation. Mutations in the unc-103 potassium channel gene suppress a gain-of-function phenotype of unc-43 in one tissue without affecting other tissues; thus, UNC-103 may be a tissue-specific target of CaMKII in vivo.


Sujet(s)
Caenorhabditis elegans/physiologie , Calcium-Calmodulin-Dependent Protein Kinases/physiologie , Séquence d'acides aminés , Animaux , Horloges biologiques/physiologie , Caenorhabditis elegans/enzymologie , Caenorhabditis elegans/génétique , Protéines de Caenorhabditis elegans , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/génétique , Défécation/physiologie , Femelle , Locomotion/physiologie , Données de séquences moléculaires , Contraction musculaire/physiologie , Mutation , Oviposition/physiologie , Phosphorylation , Canaux potassiques/métabolisme , Similitude de séquences d'acides aminés
3.
Genetics ; 141(3): 961-76, 1995 Nov.
Article de Anglais | MEDLINE | ID: mdl-8582640

RÉSUMÉ

We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations.


Sujet(s)
Caenorhabditis elegans/génétique , Gènes dominants , Gènes d'helminthe , Protéines d'helminthes/génétique , Muscles/physiologie , Animaux , Caenorhabditis elegans/physiologie , Défécation/génétique , Déglutition/génétique , Femelle , Protéines d'helminthes/physiologie , Lasers , Locomotion/génétique , Motoneurones/physiologie , Contraction musculaire/effets des médicaments et des substances chimiques , Contraction musculaire/effets des radiations , Mutation , Oviposition/effets des médicaments et des substances chimiques , Oviposition/génétique
4.
J Neurosci ; 15(9): 6094-102, 1995 Sep.
Article de Anglais | MEDLINE | ID: mdl-7666193

RÉSUMÉ

In the C. elegans hermaphrodite the expulsion step of defecation depends on the coordinated contraction of three enteric muscle groups: the anal depressor muscle, the intestinal muscles, and the sphincter muscle. These muscles are activated by excitatory GABA neurotransmission. Mutations in 13 genes that affect activation of these enteric muscles have previously been identified. We show that the larval male defecates by contracting the same set of enteric muscles, and that these contractions require 12 of these 13 genes. However, near the end of the last larval stage, the male anal region undergoes a developmental change, including dramatic hypertrophy of the anal sphincter muscle and the opening of a cloacal canal. We find that this modified sphincter must now relax to permit defecation. In contrast to the larval male, we find that in the adult male only 2 of the 13 genes required for enteric muscle contraction, unc-25 and unc-47, are important for sphincter muscle relaxation. unc-25 and unc-47 are required for the synthesis and utilization of GABA. We also find that two other genes, unc-46 and unc-49, previously implicated in the inhibitory action of GABA on body-wall muscle, are also required for normal adult male sphincter relaxation. In these mutants, failure to relax the sphincter muscle results in a constipated phenotype, and killing the sphincter muscle rescues this phenotype. We also find that a GABA agonist or GABA itself can suppress the adult male sphincter relaxation defect of unc-25 mutants.(ABSTRACT TRUNCATED AT 250 WORDS)


Sujet(s)
Vieillissement/physiologie , Caenorhabditis elegans/croissance et développement , Muscles/physiologie , Caractères sexuels , Acide gamma-amino-butyrique/physiologie , Canal anal/innervation , Canal anal/physiologie , Animaux , Caenorhabditis elegans/génétique , Constipation/génétique , Défécation/physiologie , Mâle , Motoneurones/physiologie , Développement musculaire , Relâchement musculaire/physiologie , Mutation , Inhibition nerveuse/physiologie , Jonction neuromusculaire/génétique , Phénotype , Transmission synaptique/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE