Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Org Lett ; 26(32): 6835-6840, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39110942

RÉSUMÉ

There are only a few examples being reported for the simultaneous control of central chirality and axial chirality because it is more challenging. Herein, we report an iridium-catalyzed asymmetric hydroarylation of unactivated alkenes with heterobiaryls to simultaneously construct axial and central chirality. The reaction showed a broad substrate scope and delivered the products with satisfactory results. The results of the control experiments demonstrated that the FerroLANE ligand promotes the reaction to proceed along a specific modified Chalk-Harrod mechanism.

2.
Org Lett ; 25(48): 8727-8732, 2023 Dec 08.
Article de Anglais | MEDLINE | ID: mdl-38029372

RÉSUMÉ

The 1,3-rearrangement of allylic derivatives has rarely been reported, except for allylic alcohols. Herein, we describe an iridium-catalyzed 1,3-rearrangement of readily available allylic ethers to access the difficultly prepared allylic ethers with a large steric hindrance. The developed method shows a broad substrate scope and could be used in the late-stage modification of several natural products. In addition, a possible reaction pathway is also provided on the basis of the control experiments.

3.
Angew Chem Int Ed Engl ; 62(41): e202309859, 2023 Oct 09.
Article de Anglais | MEDLINE | ID: mdl-37610735

RÉSUMÉ

An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE