Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Acta Biomater ; 49: 272-283, 2017 02.
Article de Anglais | MEDLINE | ID: mdl-27915019

RÉSUMÉ

Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (>100d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia long-term. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect. STATEMENT OF SIGNIFICANCE: We believe this study is important and of interest to the biomaterials and transplant community for several reasons: 1) it provides an optimized protocol for the PEGylation of islets, with minimal impact on the coated islets, which can be easily translated for clinical applications; 2) this optimized protocol demonstrates the benefits of islet PEGylation in providing modest immunosuppression in a murine model; 3) this work demonstrates the combinatory impact of PEGylation with short-course immunotherapy (via LFA-1 blockage), illustrating the capacity of PEGylation to complement existing immunotherapy; and 4) it suggests macrophage phenotype shifting as the potential mechanism for this observed benefit.


Sujet(s)
Survie du greffon/immunologie , Immunothérapie , Transplantation d'ilots de Langerhans , Polyéthylène glycols/composition chimique , Animaux , Antigènes d'histocompatibilité/métabolisme , Antigène-1 associé à la fonction du lymphocyte/métabolisme , Mâle , Souris de lignée C57BL , Modèles animaux , Survie tissulaire , Transplantation homologue
2.
Adv Healthc Mater ; 3(7): 1061-70, 2014 Jul.
Article de Anglais | MEDLINE | ID: mdl-24497465

RÉSUMÉ

Clinical islet transplantation (CIT) has emerged as a promising treatment option for type 1 diabetes mellitus (T1DM); however, the antirejection drug regimen necessary to mitigate allograft islet rejection is undesirable. The use of polymeric coatings to immunocamouflage the transplant from host immune attack has great potential. Alginate and poly(ethylene glycol) (PEG)-based polymers, functionalized with azide and phosphine, respectively, which form spontaneous and chemoselective crosslinks via the bioorthogonal Staudinger ligation scheme, were recently developed. Here, the utility of these polymers to form immunoprotective, ultrathin coatings on murine primary pancreatic islets is explored. Resulting coatings are nontoxic, with unimpaired glucose stimulated insulin secretion. Transplantation of coated BALB/c (H-2(d) ) islets into streptozotozin-induced diabetic C57BL/6 (H-2(b) ) results in prompt achievement of normoglycemia, at a rate comparable to controls. A significant subset of animals receiving coated islets (57%) exhibits long-term (>100 d) function, with robust islets observed upon explantation. Control islets rejected after 15 d (±9 d). Results illustrate the capacity of chemoselectively functionalized polymers to form coatings on islets, imparting no detrimental effect to the underlying cells, with resulting coatings exhibiting significant protective effects in an allograft murine model.


Sujet(s)
Matériaux biocompatibles/pharmacologie , Survie du greffon/effets des médicaments et des substances chimiques , Transplantation d'ilots de Langerhans , Polyéthylène glycols/pharmacologie , Animaux , Matériaux biocompatibles/composition chimique , Ilots pancréatiques/effets des médicaments et des substances chimiques , Mâle , Souris , Souris de lignée BALB C , Souris de lignée C57BL , Polyéthylène glycols/composition chimique
3.
Biomacromolecules ; 9(9): 2345-52, 2008 Sep.
Article de Anglais | MEDLINE | ID: mdl-18680342

RÉSUMÉ

We demonstrate a simple means to covalently bond DNA to both hard (i.e., glass and silicon wafers) and soft (i.e., polymeric) substrates that provides quantitative and precise control of the DNA areal density. The approach is based on spin coating an alkyne-end-functional diblock copolymer, alpha-alkyne-omega-Br-poly( tBA- b-MMA), that self-assembles on both types of substrates as an ordered monolayer and thereby directs alkyne groups to the surface. Azido-functionalized DNA is covalently linked to the alkyne functionalized substrates by means of a "click" reaction between azide and alkyne groups. The density of immobilized DNA can be quantitatively controlled by varying the parameters used for spin-coating the copolymer film, that is, solution concentration and rotational speed, or by varying the copolymer molecular weight. We find the yield of the DNA coupling reaction to be dependent on the nature of the polymer underlying the reactive alkyne functional groups, being higher for more hydrophilic polymers.


Sujet(s)
ADN/composition chimique , Méthacrylates de méthyle/composition chimique , Alcynes/composition chimique , Composés azoïques/composition chimique , ADN/synthèse chimique , Verre/composition chimique , Membrane artificielle , Méthacrylates de méthyle/synthèse chimique , Structure moléculaire , Photochimie , Silicium/composition chimique , Propriétés de surface
4.
Langmuir ; 24(14): 7450-6, 2008 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-18558782

RÉSUMÉ

There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.


Sujet(s)
Méthacrylates/composition chimique , Polymères/composition chimique , Azotures/composition chimique , Éthylène glycol/composition chimique , Fluorescéine/composition chimique , Structure moléculaire , Masse moléculaire , Propriétés de surface
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE