Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 28
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Cell Endocrinol ; 592: 112323, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38936597

RÉSUMÉ

Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11ß-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.

2.
Nat Commun ; 15(1): 1966, 2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38438345

RÉSUMÉ

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.


Sujet(s)
Ascomycota , Noyau parabrachial , Tegmentum pontin , Humains , Animaux , Souris , Hybridation fluorescente in situ , Tronc cérébral , Locus ceruleus
3.
bioRxiv ; 2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-38014113

RÉSUMÉ

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed many neuronal subtypes' unique marker genes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.

4.
Nature ; 620(7972): 154-162, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37495689

RÉSUMÉ

Fasting initiates a multitude of adaptations to allow survival. Activation of the hypothalamic-pituitary-adrenal (HPA) axis and subsequent release of glucocorticoid hormones is a key response that mobilizes fuel stores to meet energy demands1-5. Despite the importance of the HPA axis response, the neural mechanisms that drive its activation during energy deficit are unknown. Here, we show that fasting-activated hypothalamic agouti-related peptide (AgRP)-expressing neurons trigger and are essential for fasting-induced HPA axis activation. AgRP neurons do so through projections to the paraventricular hypothalamus (PVH), where, in a mechanism not previously described for AgRP neurons, they presynaptically inhibit the terminals of tonically active GABAergic afferents from the bed nucleus of the stria terminalis (BNST) that otherwise restrain activity of corticotrophin-releasing hormone (CRH)-expressing neurons. This disinhibition of PVHCrh neurons requires γ-aminobutyric acid (GABA)/GABA-B receptor signalling and potently activates the HPA axis. Notably, stimulation of the HPA axis by AgRP neurons is independent of their induction of hunger, showing that these canonical 'hunger neurons' drive many distinctly different adaptations to the fasted state. Together, our findings identify the neural basis for fasting-induced HPA axis activation and uncover a unique means by which AgRP neurons activate downstream neurons: through presynaptic inhibition of GABAergic afferents. Given the potency of this disinhibition of tonically active BNST afferents, other activators of the HPA axis, such as psychological stress, may also work by reducing BNST inhibitory tone onto PVHCrh neurons.


Sujet(s)
Jeûne , Axe hypothalamohypophysaire , Neurones , Axe hypophyso-surrénalien , Protéine apparentée à Agouti/métabolisme , Corticolibérine/métabolisme , Jeûne/physiologie , Neurones GABAergiques/métabolisme , Acide gamma-amino-butyrique/métabolisme , Axe hypothalamohypophysaire/cytologie , Axe hypothalamohypophysaire/métabolisme , Neurones/métabolisme , Noyau paraventriculaire de l'hypothalamus/cytologie , Noyau paraventriculaire de l'hypothalamus/métabolisme , Axe hypophyso-surrénalien/cytologie , Axe hypophyso-surrénalien/innervation , Axe hypophyso-surrénalien/métabolisme , Terminaisons présynaptiques/métabolisme , Noyaux du septum/cytologie , Noyaux du septum/métabolisme
5.
J Physiol ; 601(16): 3499-3532, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37291801

RÉSUMÉ

In addition to its renal and cardiovascular functions, angiotensin signalling is thought to be responsible for the increases in salt and water intake caused by hypovolaemia. However, it remains unclear whether these behaviours require angiotensin production in the brain or liver. Here, we use in situ hybridization to identify tissue-specific expression of the genes required for producing angiotensin peptides, and then use conditional genetic deletion of the angiotensinogen gene (Agt) to test whether production in the brain or liver is necessary for sodium appetite and thirst. In the mouse brain, we identified expression of Agt (the precursor for all angiotensin peptides) in a large subset of astrocytes. We also identified Ren1 and Ace (encoding enzymes required to produce angiotensin II) expression in the choroid plexus, and Ren1 expression in neurons within the nucleus ambiguus compact formation. In the liver, we confirmed that Agt is widely expressed in hepatocytes. We next tested whether thirst and sodium appetite require angiotensinogen production in astrocytes or hepatocytes. Despite virtually eliminating expression in the brain, deleting astrocytic Agt did not reduce thirst or sodium appetite. Despite markedly reducing angiotensinogen in the blood, eliminating Agt from hepatocytes did not reduce thirst or sodium appetite, and in fact, these mice consumed the largest amounts of salt and water after sodium deprivation. Deleting Agt from both astrocytes and hepatocytes also did not prevent thirst or sodium appetite. Our findings suggest that angiotensin signalling is not required for sodium appetite or thirst and highlight the need to identify alternative signalling mechanisms. KEY POINTS: Angiotensin signalling is thought to be responsible for the increased thirst and sodium appetite caused by hypovolaemia, producing elevated water and sodium intake. Specific cells in separate brain regions express the three genes needed to produce angiotensin peptides, but brain-specific deletion of the angiotensinogen gene (Agt), which encodes the lone precursor for all angiotensin peptides, did not reduce thirst or sodium appetite. Double-deletion of Agt from brain and liver also did not reduce thirst or sodium appetite. Liver-specific deletion of Agt reduced circulating angiotensinogen levels without reducing thirst or sodium appetite. Instead, these angiotensin-deficient mice exhibited an enhanced sodium appetite. Because the physiological mechanisms controlling thirst and sodium appetite continued functioning without angiotensin production in the brain and liver, understanding these mechanisms requires a renewed search for the hypovolaemic signals necessary for activating each behaviour.


Sujet(s)
Angiotensinogène , Sodium , Souris , Animaux , Angiotensinogène/génétique , Angiotensinogène/métabolisme , Appétit/physiologie , Soif/physiologie , Hypovolémie , Astrocytes/métabolisme , Hépatocytes/métabolisme , Angiotensine-II/métabolisme , Chlorure de sodium , Eau
6.
J Neurophysiol ; 129(2): 347-355, 2023 02 01.
Article de Anglais | MEDLINE | ID: mdl-36542422

RÉSUMÉ

The parabrachial nucleus (PB) in the upper brainstem receives interoceptive information and sends a massive output projection directly to the cerebral cortex. Its glutamatergic axons primarily target the midinsular cortex, and we have proposed that this PB-insular projection promotes arousal. Here, we test whether stimulating this projection causes wakefulness. We combined optogenetics and video-electroencephalography (vEEG) in mice to test this hypothesis by stimulating PB axons in the insular cortex. Stimulating this projection did not alter the cortical EEG or awaken mice. Also, despite a tendency toward aversion, PB-insular stimulation did not significantly alter real-time place preference (RTPP). These results are not consistent with the hypothesis that the direct PB-insular projection is part of the ascending arousal system.NEW & NOTEWORTHY A brainstem region critical for wakefulness overlaps the medial parabrachial nucleus (PB) and has functional and direct axonal connectivity with the insular cortex. In this study, we hypothesized that this direct projection from the PB to the insular cortex promotes arousal. However, photostimulating PB axons in the insular cortex did not alter the cortical EEG or awaken mice. This information constrains the possible circuit connections through which brainstem neurons may sustain arousal.


Sujet(s)
Tronc cérébral , Cortex cérébral , Souris , Animaux , Tronc cérébral/physiologie , Électroencéphalographie , Éveil , Vigilance
7.
Mol Metab ; 66: 101622, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36307046

RÉSUMÉ

OBJECTIVE: RGS2 is a GTPase activating protein that modulates GPCR-Gα signaling and mice lacking RGS2 globally exhibit metabolic alterations. While RGS2 is known to be broadly expressed throughout the body including the brain, the relative contribution of brain RGS2 to metabolic homeostasis remains unknown. The purpose of this study was to characterize RGS2 expression in the paraventricular nucleus of hypothalamus (PVN) and test its role in metabolic homeostasis. METHODS: We used a combination of RNAscope in situ hybridization (ISH), immunohistochemistry, and bioinformatic analyses to characterize the pattern of Rgs2 expression in the PVN. We then created mice lacking Rgs2 either prenatally or postnatally in the PVN and evaluated their metabolic consequences. RESULTS: RNAscope ISH analysis revealed a broad but regionally enriched Rgs2 mRNA expression throughout the mouse brain, with the highest expression being observed in the PVN along with several other brain regions, such as the arcuate nucleus of hypothalamus and the dorsal raphe nucleus. Within the PVN, we found that Rgs2 is specifically enriched in CRH+ endocrine neurons and is further increased by calorie restriction. Functionally, although Sim1-Cre-mediated prenatal deletion of Rgs2 in PVN neurons had no major effects on metabolic homeostasis, AAV-mediated adult deletion of Rgs2 in the PVN led to significantly increased food intake, body weight (both fat and fat-free masses), body length, and blood glucose levels in both male and female mice. Strikingly, we found that prolonged postnatal loss of Rgs2 leads to neuronal cell death in the PVN, while rapid body weight gain in the early phase of viral-mediated PVN Rgs2 deletion is independent of PVN neuronal loss. CONCLUSIONS: Our results provide the first evidence to show that PVN Rgs2 expression is not only sensitive to metabolic challenge but also critically required for PVN endocrine neurons to function and maintain metabolic homeostasis.


Sujet(s)
Métabolisme énergétique , Noyau paraventriculaire de l'hypothalamus , Souris , Animaux , Mâle , Femelle , Noyau paraventriculaire de l'hypothalamus/métabolisme , Métabolisme énergétique/physiologie , Obésité/métabolisme , Homéostasie , Poids
9.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R342-R361, 2021 03 01.
Article de Anglais | MEDLINE | ID: mdl-33296280

RÉSUMÉ

Previously, we identified a population of neurons in the hindbrain tegmentum, bordering the locus coeruleus (LC). We named this population the pre-locus coeruleus (pre-LC) because in rats its neurons lie immediately rostral to the LC. In mice, however, pre-LC and LC neurons intermingle, making them difficult to distinguish. Here, we use molecular markers and anterograde tracing to clarify the location and distribution of pre-LC neurons in mice, relative to rats. First, we colocalized the transcription factor FoxP2 with the activity marker Fos to identify pre-LC neurons in sodium-deprived rats and show their distribution relative to surrounding catecholaminergic and cholinergic neurons. Next, we used sodium depletion and chemogenetic activation of the aldosterone-sensitive HSD2 neurons in the nucleus of the solitary tract (NTS) to identify the homologous population of pre-LC neurons in mice, along with a related population in the central lateral parabrachial nucleus. Using Cre-reporter mice for Pdyn, we confirmed that most of these sodium-depletion-activated neurons are dynorphinergic. Finally, after confirming that these neurons receive excitatory input from the NTS and paraventricular hypothalamic nucleus, plus convergent input from the inhibitory AgRP neurons in the arcuate hypothalamic nucleus, we identify a major, direct input projection from the medial prefrontal cortex. This new information on the location, distribution, and input to pre-LC neurons provides a neuroanatomical foundation for cell-type-specific investigation of their properties and functions in mice. Pre-LC neurons likely integrate homeostatic information from the brainstem and hypothalamus with limbic, contextual information from the cerebral cortex to influence ingestive behavior.


Sujet(s)
Encéphale/physiologie , Voies nerveuses/physiologie , Neurones/physiologie , 11-beta-Hydroxysteroid dehydrogenase type 2/génétique , Neurones adrénergiques/physiologie , Aliment pour animaux , Animaux , Régulation de l'appétit , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Marqueurs biologiques/métabolisme , Encéphale/cytologie , Encéphale/métabolisme , Neurones cholinergiques/physiologie , Régime pauvre en sel , Enképhalines/génétique , Comportement alimentaire , Femelle , Locus ceruleus/physiologie , Mâle , Souris de lignée C57BL , Souris transgéniques , Voies nerveuses/cytologie , Voies nerveuses/métabolisme , Techniques de traçage neuroanatomique , Neurones/métabolisme , Précurseurs de protéines/génétique , Rat Sprague-Dawley , Protéines de répression/génétique
10.
Nature ; 578(7796): 610-614, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-32076265

RÉSUMÉ

The sympathetic nervous system innervates peripheral organs to regulate their function and maintain homeostasis, whereas target cells also produce neurotrophic factors to promote sympathetic innervation1,2. The molecular basis of this bi-directional communication remains to be fully determined. Here we use thermogenic adipose tissue from mice as a model system to show that T cells, specifically γδ T cells, have a crucial role in promoting sympathetic innervation, at least in part by driving the expression of TGFß1 in parenchymal cells via the IL-17 receptor C (IL-17RC). Ablation of IL-17RC specifically in adipose tissue reduces expression of TGFß1 in adipocytes, impairs local sympathetic innervation and causes obesity and other metabolic phenotypes that are consistent with defective thermogenesis; innervation can be fully rescued by restoring TGFß1 expression. Ablating γδ Τ cells and the IL-17RC signalling pathway also impairs sympathetic innervation in other tissues such as salivary glands. These findings demonstrate coordination between T cells and parenchymal cells to regulate sympathetic innervation.


Sujet(s)
Adipocytes/métabolisme , Tissu adipeux/innervation , Tissu adipeux/métabolisme , Interleukine-17/métabolisme , Système nerveux sympathique/physiologie , Lymphocytes T/métabolisme , Thermogenèse , Tissu adipeux brun/métabolisme , Animaux , Interleukine-17/déficit , Interleukine-17/génétique , Mâle , Souris , Souris knockout , Spécificité d'organe , Tissu parenchymateux/cytologie , Transduction du signal , Facteur de croissance transformant bêta-1/génétique , Facteur de croissance transformant bêta-1/métabolisme
11.
Neuron ; 105(6): 1094-1111.e10, 2020 03 18.
Article de Anglais | MEDLINE | ID: mdl-31955944

RÉSUMÉ

Interoception, the sense of internal bodily signals, is essential for physiological homeostasis, cognition, and emotions. While human insular cortex (InsCtx) is implicated in interoception, the cellular and circuit mechanisms remain unclear. We imaged mouse InsCtx neurons during two physiological deficiency states: hunger and thirst. InsCtx ongoing activity patterns reliably tracked the gradual return to homeostasis but not changes in behavior. Accordingly, while artificial induction of hunger or thirst in sated mice via activation of specific hypothalamic neurons (AgRP or SFOGLUT) restored cue-evoked food- or water-seeking, InsCtx ongoing activity continued to reflect physiological satiety. During natural hunger or thirst, food or water cues rapidly and transiently shifted InsCtx population activity to the future satiety-related pattern. During artificial hunger or thirst, food or water cues further shifted activity beyond the current satiety-related pattern. Together with circuit-mapping experiments, these findings suggest that InsCtx integrates visceral-sensory signals of current physiological state with hypothalamus-gated amygdala inputs that signal upcoming ingestion of food or water to compute a prediction of future physiological state.


Sujet(s)
Cortex cérébral/physiologie , Faim/physiologie , Intéroception/physiologie , Soif/physiologie , Protéine apparentée à Agouti/métabolisme , Animaux , Clozapine/analogues et dérivés , Clozapine/pharmacologie , Signaux , Femelle , Hypothalamus/physiologie , Mâle , Souris , Souris transgéniques , Voies nerveuses/physiologie , Imagerie optique , Optogénétique , Organe subfornical/physiologie
12.
Proc Natl Acad Sci U S A ; 116(27): 13670-13679, 2019 07 02.
Article de Anglais | MEDLINE | ID: mdl-31213533

RÉSUMÉ

Leptin informs the brain about sufficiency of fuel stores. When insufficient, leptin levels fall, triggering compensatory increases in appetite. Falling leptin is first sensed by hypothalamic neurons, which then initiate adaptive responses. With regard to hunger, it is thought that leptin-sensing neurons work entirely via circuits within the central nervous system (CNS). Very unexpectedly, however, we now show this is not the case. Instead, stimulation of hunger requires an intervening endocrine step, namely activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Increased corticosterone then activates AgRP neurons to fully increase hunger. Importantly, this is true for 2 forms of low leptin-induced hunger, fasting and poorly controlled type 1 diabetes. Hypoglycemia, which also stimulates hunger by activating CNS neurons, albeit independently of leptin, similarly recruits and requires this pathway by which HPA axis activity stimulates AgRP neurons. Thus, HPA axis regulation of AgRP neurons is a previously underappreciated step in homeostatic regulation of hunger.


Sujet(s)
Faim/physiologie , Axe hypothalamohypophysaire/physiologie , Leptine/physiologie , Axe hypophyso-surrénalien/physiologie , Hormone corticotrope/sang , Animaux , Consommation alimentaire/physiologie , Jeûne/physiologie , Axe hypothalamohypophysaire/effets des médicaments et des substances chimiques , Insuline/pharmacologie , Leptine/sang , Mâle , Mifépristone/pharmacologie , Axe hypophyso-surrénalien/effets des médicaments et des substances chimiques , Rats , Récepteurs aux glucocorticoïdes/antagonistes et inhibiteurs
13.
Nature ; 569(7755): 229-235, 2019 05.
Article de Anglais | MEDLINE | ID: mdl-31043739

RÉSUMÉ

The sympathetic nervous system drives brown and beige adipocyte thermogenesis through the release of noradrenaline from local axons. However, the molecular basis of higher levels of sympathetic innervation of thermogenic fat, compared to white fat, has remained unknown. Here we show that thermogenic adipocytes express a previously unknown, mammal-specific protein of the endoplasmic reticulum that we term calsyntenin 3ß. Genetic loss or gain of expression of calsyntenin 3ß in adipocytes reduces or enhances functional sympathetic innervation, respectively, in adipose tissue. Ablation of calsyntenin 3ß predisposes mice on a high-fat diet to obesity. Mechanistically, calsyntenin 3ß promotes endoplasmic-reticulum localization and secretion of S100b-a protein that lacks a signal peptide-from brown adipocytes. S100b stimulates neurite outgrowth from sympathetic neurons in vitro. A deficiency of S100b phenocopies deficiency of calsyntenin 3ß, and forced expression of S100b in brown adipocytes rescues the defective sympathetic innervation that is caused by ablation of calsyntenin 3ß. Our data reveal a mammal-specific mechanism of communication between thermogenic adipocytes and sympathetic neurons.


Sujet(s)
Tissu adipeux brun/innervation , Tissu adipeux brun/métabolisme , Protéines de liaison au calcium/métabolisme , Protéines membranaires/métabolisme , Neurones/métabolisme , Sous-unité bêta de la protéine liant le calcium S100/métabolisme , Système nerveux sympathique/cytologie , Thermogenèse , Adipocytes/métabolisme , Animaux , Protéines de liaison au calcium/déficit , Protéines de liaison au calcium/génétique , Alimentation riche en graisse , Réticulum endoplasmique/métabolisme , Femelle , Mâle , Protéines membranaires/déficit , Protéines membranaires/génétique , Souris , Souris transgéniques , Neurites/métabolisme , Obésité/métabolisme , Spécificité d'organe , Système nerveux sympathique/métabolisme , Thermogenèse/génétique
14.
Nature ; 570(7760): E32, 2019 Jun.
Article de Anglais | MEDLINE | ID: mdl-31114060

RÉSUMÉ

In Fig. 6a of this Article, the two dots corresponding to Cidea and S100b were erroneously moved to the top left of the volcano plot; this figure has been corrected online.An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Neuron ; 102(3): 653-667.e6, 2019 05 08.
Article de Anglais | MEDLINE | ID: mdl-30879785

RÉSUMÉ

SIM1-expressing paraventricular hypothalamus (PVH) neurons are key regulators of energy balance. Within the PVHSIM1 population, melanocortin-4 receptor-expressing (PVHMC4R) neurons are known to regulate satiety and bodyweight, yet they account for only half of PVHSIM1 neuron-mediated regulation. Here we report that PVH prodynorphin-expressing (PVHPDYN) neurons, which notably lack MC4Rs, function independently and additively with PVHMC4R neurons to account for the totality of PVHSIM1 neuron-mediated satiety. Moreover, PVHPDYN neurons are necessary for prevention of obesity in an independent but equipotent manner to PVHMC4R neurons. While PVHPDYN and PVHMC4R neurons both project to the parabrachial complex (PB), they synaptically engage distinct efferent nodes, the pre-locus coeruleus (pLC), and central lateral parabrachial nucleus (cLPBN), respectively. PB-projecting PVHPDYN neurons, like PVHMC4R neurons, receive input from interoceptive ARCAgRP neurons, respond to caloric state, and are sufficient and necessary to control food intake. This expands the CNS satiety circuitry to include two non-overlapping PVH to hindbrain circuits.


Sujet(s)
Comportement alimentaire/physiologie , Neurones/cytologie , Obésité/physiopathologie , Noyau paraventriculaire de l'hypothalamus/cytologie , Sensation de satiété/physiologie , Protéine apparentée à Agouti/métabolisme , Animaux , Noyau arqué de l'hypothalamus/cytologie , Noyau arqué de l'hypothalamus/métabolisme , Noyau arqué de l'hypothalamus/physiologie , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Métabolisme énergétique , Enképhalines/métabolisme , Locus ceruleus/cytologie , Locus ceruleus/métabolisme , Locus ceruleus/physiologie , Souris , Neurones/métabolisme , Neurones/physiologie , Noyau parabrachial/cytologie , Noyau parabrachial/métabolisme , Noyau parabrachial/physiologie , Noyau paraventriculaire de l'hypothalamus/métabolisme , Noyau paraventriculaire de l'hypothalamus/physiologie , Précurseurs de protéines/métabolisme , Récepteur de la mélanocortine de type 4/métabolisme , Protéines de répression/métabolisme
16.
Brain Struct Funct ; 224(1): 387-417, 2019 Jan.
Article de Anglais | MEDLINE | ID: mdl-30343334

RÉSUMÉ

Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice. Many cells throughout the brain have a developmental history of Hsd11b2 expression, but in the adult brain one small brainstem region with a leaky blood-brain barrier contains HSD2 neurons. These neurons express Hsd11b2, Nr3c2 (mineralocorticoid receptor), Agtr1a (angiotensin receptor), Slc17a6 (vesicular glutamate transporter 2), Phox2b, and Nxph4; many also express Cartpt or Lmx1b. No HSD2 neurons express cholinergic, monoaminergic, or several other neuropeptidergic markers. Their axons project to the parabrachial complex (PB), where they intermingle with AgRP-immunoreactive axons to form dense terminal fields overlapping FoxP2 neurons in the central lateral subnucleus (PBcL) and pre-locus coeruleus (pLC). Their axons also extend to the forebrain, intermingling with AgRP- and CGRP-immunoreactive axons to form dense terminals surrounding GABAergic neurons in the ventrolateral bed nucleus of the stria terminalis (BSTvL). Sparse axons target the periaqueductal gray, ventral tegmental area, lateral hypothalamic area, paraventricular hypothalamic nucleus, and central nucleus of the amygdala. Dual retrograde tracing revealed that largely separate HSD2 neurons project to pLC/PB or BSTvL. This projection pattern raises the possibility that a subset of HSD2 neurons promotes the dysphoric, anorexic, and anhedonic symptoms of hyperaldosteronism via AgRP-inhibited relay neurons in PB.


Sujet(s)
11-beta-Hydroxysteroid dehydrogenase type 2/métabolisme , Aldostérone/pharmacologie , Tronc cérébral/effets des médicaments et des substances chimiques , Neurones/effets des médicaments et des substances chimiques , Prosencéphale/effets des médicaments et des substances chimiques , Noyau du tractus solitaire/effets des médicaments et des substances chimiques , 11-beta-Hydroxysteroid dehydrogenase type 2/génétique , Animaux , Régulation de l'appétit , Axones/effets des médicaments et des substances chimiques , Axones/enzymologie , Tronc cérébral/cytologie , Tronc cérébral/enzymologie , Enképhalines/génétique , Enképhalines/métabolisme , Comportement alimentaire , Technique d'immunofluorescence , Régulation de l'expression des gènes , Gènes rapporteurs , Hybridation fluorescente in situ , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Mâle , Souris de lignée C57BL , Souris transgéniques , Microscopie de fluorescence , Voies nerveuses/effets des médicaments et des substances chimiques , Voies nerveuses/enzymologie , Techniques de traçage neuroanatomique , Neurones/enzymologie , Prosencéphale/cytologie , Prosencéphale/enzymologie , Précurseurs de protéines/génétique , Précurseurs de protéines/métabolisme , Récepteur de type 1 à l'angiotensine-II/génétique , Récepteur de type 1 à l'angiotensine-II/métabolisme , Noyau du tractus solitaire/cytologie , Noyau du tractus solitaire/enzymologie
17.
Curr Biol ; 28(14): 2291-2301.e5, 2018 07 23.
Article de Anglais | MEDLINE | ID: mdl-30017482

RÉSUMÉ

Stress elicits a variety of autonomic responses, including hyperthermia (stress fever) in humans and animals. In this present study, we investigated the circuit basis for thermogenesis and heat conservation during this response. We first demonstrated the glutamatergic identity of the dorsal hypothalamic area (DHAVglut2) neurons that innervate the raphe pallidus nucleus (RPa) to regulate core temperature (Tc) and mediate stress-induced hyperthermia. Then, using chemogenetic and optogenetic methods to manipulate this hypothalamomedullary circuit, we found that activation of DHAVglut2 neurons potently drove an increase in Tc, but surprisingly, stress-induced hyperthermia was only reduced by about one-third when they were inhibited. Further investigation showed that DHAVglut2 neurons activate brown adipose tissue (BAT) but do not cause vasoconstriction, instead allowing reflex tail artery vasodilation as a response to BAT-induced hyperthermia. Retrograde rabies virus tracing revealed projections from DHAVglut2 neurons to RPaVglut3, but not to RPaGABA neurons, and identified a set of inputs to DHAVglut2 → RPa neurons that are likely to mediate BAT activation. The dissociation of the DHAVglut2 thermogenic pathway from the thermoregulatory vasoconstriction (heat-conserving) pathway may explain stress flushing (skin vasodilation but a feeling of being too hot) during stressful times.


Sujet(s)
Régulation de la température corporelle/physiologie , Fièvre/physiopathologie , Hypothalamus/métabolisme , Neurones/physiologie , Thermogenèse , Animaux , Femelle , Mâle , Souris , Noyau pâle du raphé/physiologie , Optogénétique , Stress physiologique
18.
Neuron ; 96(1): 190-206.e7, 2017 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-28957668

RÉSUMÉ

Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTSHSD2 neurons) were shown to drive sodium appetite. Here we investigate the basis for NTSHSD2 neuron activation, identify the circuit by which NTSHSD2 neurons drive appetite, and uncover an interaction between the NTSHSD2 circuit and ATII signaling. NTSHSD2 neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Nav1.5 channels. Remarkably, NTSHSD2 neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTSHSD2 neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTSHSD2 neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.


Sujet(s)
Aldostérone/physiologie , Angiotensine-II/physiologie , Horloges biologiques/physiologie , Neurones/physiologie , Transduction du signal , Sodium/physiologie , Noyau du tractus solitaire/physiologie , Animaux , Consommation alimentaire/physiologie , Canaux contrôlés par les nucléotides cycliques et activés par l'hyperpolarisation/physiologie , Mâle , Souris , Souris transgéniques , Canal sodique voltage-dépendant NAV1.5/physiologie , Voies nerveuses/physiologie , Noyaux du septum/physiologie , Sodium/déficit
20.
Nature ; 546(7660): 611-616, 2017 06 29.
Article de Anglais | MEDLINE | ID: mdl-28614299

RÉSUMÉ

Physiological needs bias perception and attention to relevant sensory cues. This process is 'hijacked' by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how 'cognitive' cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food-cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic 'hunger neurons' (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues.


Sujet(s)
Cortex cérébral/cytologie , Cortex cérébral/physiologie , Aliments , Homéostasie , Voies nerveuses , Stimulation lumineuse , Protéine apparentée à Agouti/métabolisme , Animaux , Signaux , Faim/physiologie , Hypothalamus/cytologie , Hypothalamus/physiologie , Mâle , Souris , Souris de lignée C57BL , Neurones/métabolisme , Fragments peptidiques/métabolisme , Sensation de satiété/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE