Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Rep ; 33(3): 108292, 2020 10 20.
Article de Anglais | MEDLINE | ID: mdl-33086068

RÉSUMÉ

Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.


Sujet(s)
Calcium/métabolisme , Molécule-2 d'interaction stromale/métabolisme , Canaux calciques/métabolisme , Signalisation calcique , Lignée cellulaire tumorale , Cystéine/métabolisme , Humains , Protéines intracellulaires sensibles au calcium/métabolisme , Protéines tumorales/génétique , Protéines tumorales/métabolisme , Protéine ORAI1/métabolisme , Oxydoréduction , Stress oxydatif/physiologie , Molécule-1 d'interaction stromale/génétique , Molécule-1 d'interaction stromale/métabolisme , Molécule-2 d'interaction stromale/génétique , Molécule-2 d'interaction stromale/physiologie
2.
EMBO J ; 39(19): e103530, 2020 10 01.
Article de Anglais | MEDLINE | ID: mdl-33001475

RÉSUMÉ

Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post-mitotic cells such as cardiomyocytes and neurons. Here, we show that stress-induced upregulation of the ROS-generating protein Nox4 at the ER-mitochondria contact sites (MAMs) is a pro-survival mechanism that inhibits calcium transfer through InsP3 receptors (InsP3 R). Nox4 mediates redox signaling at the MAM of stressed cells to augment Akt-dependent phosphorylation of InsP3 R, thereby inhibiting calcium flux and mPT-dependent necrosis. In hearts subjected to ischemia-reperfusion, Nox4 limits infarct size through this mechanism. These results uncover a hitherto unrecognized stress pathway, whereby a ROS-generating protein mediates pro-survival effects through spatially confined signaling at the MAM to regulate ER to mitochondria calcium flux and triggering of the mPT.


Sujet(s)
Signalisation calcique , Calcium/métabolisme , Récepteurs à l'inositol 1,4,5-triphosphate/métabolisme , Mitochondries du myocarde/métabolisme , Myocytes cardiaques/métabolisme , NADPH Oxidase 4/métabolisme , Animaux , Survie cellulaire , Récepteurs à l'inositol 1,4,5-triphosphate/génétique , Lésion de reperfusion myocardique/génétique , Lésion de reperfusion myocardique/métabolisme , NADPH Oxidase 4/génétique , Stress oxydatif , Rats
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE